Evaluation of seismic response of the straight concrete bridges with three methods of passive control (K-damper, TMD and LRB)

Document Type : Original Article

Authors

1 Department of civil Engineering,, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of civil Engineering, Science and research branchو Islamic Azad University, Tehran, Iran

Abstract

In present research, the ability and advantages of K-Damper, LRB and TMD as passive control devices in reducing or balancing the seismic forces on substructures of bridges are investigated. Regarding to the variety of bridge damages occurred in the past earthquakes mostly as a result of underestimation of the seismic forces, passive control devices can be effectively used in designing or retrofitting of bridges which are located in high seismicity zones. Contemporary Seismic isolation systems for the bridge applications provide: (a) horizontal isolation from the effects of earthquake shaking and (b) an energy dissipation mechanism to reduce displacements. Throughout the years many kinds of seismic isolation mechanisms have been developed with two concepts: the introduction of negative stiffness elements and the incorporation of an additional mass. Combining the beneficial characteristics of both concepts, a novel passive vibration isolation and damping concept has been introduced as the K-damper.
In this paper, evaluation of seismic response of the straight concrete bridges with three methods of passive control (K-damper, TMD and LRB) by adding them to a typical bridge was investigated. It was concluded that these passive control devices are very effective in reducing seismic forces and displacements of the typical bridge. By absorbing most of input energy of earthquake, these devices have the ability to protect the bridge substructure from the seismic damage. A comparison with a non-isolated bridge with similar characteristics confirms that LRB can decrease the pier base shear because of high flexibility and increase the main period of the structure. Further, K-damper based seismic absorption designs can provide lower displacement at the top of the piers. Therefore, by combining K-damper and LRB can obtain the best performance in reducing the top displacement of the piers and reducing the base shear.

Keywords

Main Subjects


[1] Chopra, A. K. (2012). Dynamics of Structures. Fourth. California: Prentice Hall, 818-827.
[2] Housner, G. W. Bergman, L. A. Caughey,T. K. Chassiakos, A. G. Masri, S. F. Skelton, R. E. Soong, T. T. Spencer, B. F. and Yao, T.(1997). Structural Control: Past, Present and Future, Journal of Engineering Mechanics, 106, 897-933.
[3] Naeim, F. and Kelly, J.M. (1999). Design of seismic Isolated Structure: From Theory to Practice. Proc. 6th national Earthquake Engineering, Conf, Wiley Chichester, U.K.
[4] Magni, H. Bjarni, B. Einar, H. (2010). Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion. Engineering Structures, Elsevier Science Ltd, 30, 447-455.
[5] Karalar, M. Jamie, E. Murat, D. (2012). Parametric analysis of optimum isolator properties for bridges susceptible to near-fault ground motions. Engineering Structures, Elsevier Science Ltd, 40, 276-287.
[6] Sapountzakis, EJ. Syrimi, PG, Pantazis, IA. Antoniadis, IA. (2017). KDamper concept in seismic isolation of bridges with flexible piers. Engineering Structures. Engineering Structures, Elsevier Science Ltd, 153, 525-539.
[7] Mokrani, B. Tian, Z. Alaluf, D. Meng, F. Preumont, A. (2017). Passive damping of suspension bridges using multi-degree of freedom tuned mass dampers. Engineering Structures, Elsevier Science Ltd, 153, 749-756.
[8] Tubaldi, E. Mitoulis, S.A. Ahmadi, H. (2018). Comparison of different models for high damping rubber bearings in seismically isolated bridges. Engineering Structures, Elsevier Science Ltd, 104, 329-345.
[9] Den Hartog, J. P. (1953). Mechanical Vibrations, Mc-Graw-Hill Inc., New York, NY.
]10 [بطحایی، اکبر. رمضانی، میثم. قربانی تنها، کیوان. (1395). کنترل ارتعاشات پل کالج با استفاده از میراگرهای جرمی تنظیم شونده. کنفرانس مهندسی عمران. دانشگاه تربیت مدرس. 32-21.
]11[ هوائی, غلامرضا. مؤیدی، سید امیرحسین. ارزیابی تأثیر جداساز لرزه‌ای اصطکاکی-لاستیکی در خرابی پیش‌رونده پل‌ها. نشریه مهندسی سازه و ساخت, 1395; 3(2): 113-132.
]12[ شیراوند، محمودرضا. رسولی، مهسا. ارائه مدل سه درجه آزادی برای بررسی تاثیر پارامترهای جرمی بر زمان تناوب طولی پل‌های دارای جداگر لرزه‌ای. نشریه مهندسی سازه و ساخت, 1397; 5 (شماره ویژه 2): 53-64.
]13[ دهقانی، احسان. موسوی، امید. (1395). بررسی ضریب رفتار پلهای بتنی با جداگرهای الاستومریک(ERB) و جداگرهای هسته سربی (LRB). مجله پژوهش های عمران و محیط زیست. 25-13.
]14[ ارزاقی، ش. (1384). ارزیابی عملکرد جرم میراگر تنظیم شده در کنترل رفتار لرزه ای مدل های سازه ای سه بعدی، پایان نامه کارشناسی ارشد. دانشگاه صنعتی شریف، دانشکده مهندسی عمران.
]15[ کرامتی، محسن. نیکخواه شهمیرزادی، محمود. قنادیان، محمدعلی. ناجی، نغمه. (1392). طراحی میراگرهای جرمی تنظیم شده در نرم افزار sap. مجله مهندسی مکانیک و ارتعاشات.34-31.
]16[ آیین نامه طرح پلهای راه و را ه آهن در برابر زلزله، نشریه 463، 1387، معاونت امور فنی سازمان مدیریت و برنامه ریزی.
[17] peer, (1998-2019). https://peer.berkeley.edu/peer-strong-ground-motion-database.