Seismic Evaluation of Frame with Belt Truss by Incremental Modified Pushover Analysis (IMPA)

Document Type : Original Article

Authors

1 ms student

2 Associate Professor, Department of Civil Engineering, Kharazmi University, Tehran, Iran

3 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract

Nowadays, nonlinear static and dynamic analyses methods are rapidly expanding to evaluate the seismic performance of structures. Nonlinear dynamic analyses methods require a large amount of computations and are relatively time consuming. This fact has led to the emergence of novel methods based on the concepts of nonlinear static and dynamic analyses. One of the most widely used structures in tall buildings is a combination of the two popular building structures: Bundled tube frame and belt truss. This structural form is effective in reducing the structure responses to lateral loadings. In this paper, two 20-story Steel buildings with different arrangement of resistant rigid belt truss in the 19th and 20th stories have been evaluated under 7 pairs of far and near-field scaled ground motion. Incremental dynamic (IDA), Incremental modified Pushover (IMPA), modal pushover (MPA), and dynamic time history analyses have been conducted to evaluate the seismic response of the structures. The accuracy of the IMPA method has been compared to that of the Incremental Dynamic Analysis (IDA), and a comparison has been also made between nonlinear behavior of the studied models, with and without the belt truss. Results indicate the significant difference in the story drift in the three aforementioned structural configurations under high-amplitude speed pulses. Structures stiffened with belt truss at higher levels of PGA have collapsed and the seismic capacity of the frame has been increased in the upper floors. Maximum relative displacement has been occurred in the inelastic response area near the middle stories.

Keywords

Main Subjects


[1] Krawinkler, H., Seneviratna, G.D.P.K., “Pros and cons of a pushover analysis of seismic performance evaluation”, Engineering Structures, 20(4-6), pp. 452- 464, 1998.
[2] Bracci, J.M., Kunnath, S.K., and Reinhorn, A.M., “Seismic performance and retrofit evaluation for reinforced concrete structures”. Journal of Structural Engineering, ASCE; 123(1), pp. 3–10, 1997.
[3] Chopra, A.K., Goel, R.K., “A modal pushover analysis procedure to estimating seismic demands for buildings: Theory and preliminary evaluation”, PEER Report 2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, 2001.
[4] Vamvatsikos, D. and Cornell. C.A. (2005), “Seismic Performance, Capacity and Reliability of Structures as seen Through Incremental Dynamic Analysis”, Department of Civil and environmental Engineering, Stanford University, Report No.151, August.
[5] Azimi, H. Galal, KH. and Pekau, O.A. (2009), “Incremental Modified Pushover Analysis”, the Structural Design of Tall and Special Buildings, 18, pp 839–859.
[6] Smith, B.S. and A. Coull, Tall building structures: analysis and design. 1991.
[7] Chen, Z., Seismic response of high-rise zipper braced frame structures with outrigger trusses. M.S. Thesis,Department of Civil Engineering at Concordia University Montreal, Quebec, Canada. 2012
[8] Jafari, A., Jalali, A., Assessment of performance based parameters in near fault tall buildings. J. of Applied Sciences, 9(22), 4044-4049, 2009.
[9] Kunnath, S.K., Gupta, B., “Validity of deformation demand estimates using nonlinear static procedures”, Proceeding of the U.S. Japan Workshop on Performance- Based Engineering for Reinforced Concrete Building Structures, Sapporo, Hokkaido, Japan, 2000.
[10]  El-Tawil, S., Vidarsson, E., Mikesell, T., Kunnath, S. K., Inelastic behavior and design of steel panel zones. Journal of Structural Engineering, 125(2), 183-193, 1999.
[11 ] Azhdarifar, M., Meshkat-Dini, A., Sarvghad Moghadam, A. Evaluation of seismic response of tall buildings with framed tube skeletons in high seismic areas. 7th International Conference on Seismology and Earthquake Engineering (SEE7), Tehran, Iran (12), 2015.
[12 ] Iranian National Building Code 2014 (Steel Structures – Division 10), Tehran, Iran (In Persion).
[13]  Iranian National Building Code 2014 (Design Loads for Buildings -Division 6), Tehran, Iran (In Persion).
[14]FEMA 356, Federal Emergency Management, 1998
[15]  Iranian Standard No. 2800, 2014 Iranian code of practice for seismic resistant design of buildings, fourth edition, Tehran, Iran (In Persion).
[16]  Krawinkler, H., Earthquake design and performance of steel structures. Bulletin of the New Zealand Society for Earthquake Engineering, 29, 229-241, 1996.
[17]  PEER, “Pacific Earthquake Engineering Research center strong motion database”, http://peer.berkeley.edu.
[18]   Poursha, M., 2013 An iterative process for pushover analysis of double unsymmetric-plan low-and medium-rise buildings under bi-directional seismic excitations. INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 11(2A), pp.100-114.
[19] Gupta, B., Kunnath, S.K., “Adaptive spectra-based pushover procedure for seismic evaluation of structures”, Earthquake Spectra; 16(2), pp. 367–392,
 [20]  Vamvatsikos, D., and Cornell, C.A., (2002), “The Incremental Dynamic Analysis and its Application to PerformanceBased Earthquake Engineering, ” 12th European Conference on Earthquake Engineering, London, Paper No.479.
[21]  V. Bergami, X. Liu, C. NUTI. Evaluation of a modal pushover based incremental analysis. Proceedings of ACE, Vietri sul mare (Italy), 12-13 june, 2015.
[22] SAP2000, A Computer Program for Integrated Finite Element Analysis and Design of
Structures, California, Berkeley.
[23]  PERFORM 3D, A Computer Program for Integrated Finite Element Analysis and Design of Structures, California, Berkeley.