Nonlinear stability analysis of non-prismatic simple steel frames with flexible supports and semi-rigid connection

Document Type : Original Article

Authors

1 Dept. of Civil Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, Iran.

2 M. Sc. Student of Structural Eng., Faculty of Civil Eng., Quchan University of Technology, Quchan, Iran

Abstract

In this paper, various methods of linear and nonlinear stability analysis of simple steel frames are introduced. In the following, based on moderately large rotations and small strains, nonlinear stability analysis of a non-prismatic simple steel frame with semi-rigid connection and flexible supports is performed, which is subjected to a concentrated vertical load eccentrically at its joint. Accordingly, firstly, the accuracy and capability of suggested formulations will be verified by comparing with the results of other researchers. Then, the effects of eccentric axial load factor, shape factor of non-prismatic column, rotational stiffness of elastic support, translational stiffness of lateral support, rotational stiffness of beam-column connection and slenderness ratio of members on the pre-bucking and post-buckling behavior of a steel frame will be investigated. The results show each of these factors has a significant effect on the equilibrium path and buckling load of the structure. In other words, by increasing the slenderness ratio of members, shape factor and stiffness of connections, increases the nonlinear buckling load of the structure. Accordingly, the translational stiffness of lateral support and slenderness ratio of members have the maximum and minimum effect on this increase, respectively. Moreover, by utilizing the non-linear stability analysis, the buckling load of the simple steel frame reduces with respect to linear stability analysis.

Keywords

Main Subjects


[1] Kounadis, A.N., Giri, J. and Simitses, G.J. (1977). Nonlinear stability analysis of an eccentrically loaded two-bar frame. Journal of Applied Mechanics. 44 (4), 701–706. DOI:https://doi.org/10.1115/1.3424160.
[2] Simitses, G.J. and Vlahinos, A.S. (1982). Stability analysis of a semi-rigidly connected simple frame. Journal of Constructional Steel Research. 2 (3), 29–32. DOI:https://doi.org/10.1016/0143-974X(82)90031-1.
[3] Kounadis, A.N. and Ermopoulos, J.C. (1984). Postbuckling analysis of a simple frame with varying stiffness. Acta Mechanica. 54 (1–2), 95–105. DOI:https://doi.org/10.1007/BF01190599.
[4] Avraam, T. and Kounadis, A. (1994). Elastica stability analysis of a simple frame under a follower force. Engineering Structures. 16 (4), 238–241. DOI:https://doi.org/10.1016/0141-0296(94)90062-0.
[5] Kounadis, A.N. (2002). Dynamic buckling of simple two-bar frames using catastrophe theory. International Journal of Non-Linear Mechanics. 37 (7), 1249–1259. DOI:https://doi.org/10.1016/S0020-7462(01)00138-X.
[6] Raftoyiannis, I.G. and Kounadis, A.N. (2009). Dynamic buckling of non-sway imperfect rectangular steel frames. Engineering Transactions. 57 (1), 3–15.
[7] Ioannidis, G.I. and Raftoyiannis, I.G. (2005). A simplified nonlinear stability analysis of an imperfect rectangular two-bar frame. Computational Mechanics. 35 (2), 127–133. DOI:https://doi.org/10.1007/s00466-004-0608-7.
[8] Avraam, T.P. and Raftoyiannis, I.G. (2010). Nonlinear buckling analysis of simple geometrically imperfect frames. Archive of Applied Mechanics. 80 (4), 441–450. DOI:https://doi.org/10.1007/s00419-009-0325-y.
[9] رضایی­پژند، م. و بمبائی­چی، م. (1388)، تحلیل کشسان مرتبه دوم و پایداری قاب­های فولادی با پیوندهای نیمه­سخت. نشریه­ی علمی و پژوهشی سازه و فولاد. 5 (6)، 81-59.
[10] رضایی­پژند، م.، شهابیان، ف. و بمبائی­چی، م. (1393)، تحلیل احتمالاتی پایداری قاب­های فولادی ساده و دروازه­ای با پیوندها و تکیه­گاه­های نرم.  نشریه­ی علمی و پژوهشی سازه و فولاد. 10 (16)، 79-51.
[11] Raftoyiannis, I.G. (2013). Nonlinear Stability Analysis of Simple Steel Frames with Load Imperfections. Frontiers of Engineering Mechanics Research. 2, 15–21.
[12] Avraam, T.P. and Fasoulakis, Z.C. (2013). Nonlinear postbuckling analysis of frames with varying cross-section columns. Engineering Structures. 56, 1–7. DOI:https://doi.org/10.1016/j.engstruct.2013.04.010.
[13] Fasoulakis, Z.C., Avraam, T.P. and Raftoyiannis, I.G. (2015). Dynamic buckling of partially-sway frames with varying stiffness using catastrophe theory. International Journal of Non-Linear Mechanics. 71, 116–126. DOI:https://doi.org/10.1016/j.ijnonlinmec.2014.10.002.