Effect of eliminating the column on progressive collapse on seismic performance in dual steel structures

Document Type : Original Article

Authors

1 Assistant Professor, Ghaemshahr Branch, Islamic Azad University, Ghaemshahr, Iran

2 Professor, Faculty of Civil Engineering, Babol Noshirvani University of technology, Babol, Iran

3 PhD student in Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

4 MSc of Structural Engineering, Pardisan Higher Education Institute, Fereydounkenar, Iran

Abstract

Progressive collapse is usually defined as follows: the expansion of an initial local damage within structures as a chain chemical reaction that led to the partial or total collapse of the structure. Studies in relation to the failure of structural systems in recent years highlight the importance of the phenomenon of progressive collapse caused by abnormal loading such as: accident injuries, earthquake, explosion, and etc. in order to prevent or reduce the occurrence of progressive collapse, various strategies are provided for design against progressive failure in American government documents such as: GSA and UFC. In these regulations, the loss of bearing capacity of column is considered as a promising phenomenon to investigate the performance of structure against abnormal loading. In this study, three steel structures with dual side load bearing system, average moment frame, and bracing system of 5, 10, and 15 floors were designed in Etabs 2013 software; then, using the GSA2003 regulation and selecting the method of alternative route of load transformation, foregoing structures were modeled as three-dimensional in OpenSEES software; and using nonlinear static analysis and nonlinear dynamic analysis, structures has been investigated against progressive collapse; and the results of nonlinear static analysis and nonlinear dynamic analysis compared with each other. After reviewing the results of the analysis showed that for every two analysis, removing the side column is most critical state of column elimination. In all three structures, removing the column in ground floor level creates most critical state for structure towards higher levels. By increasing the height of the structure, robustness index also is increased.

Keywords

Main Subjects


[1] GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. The U.S. General Services Administration; 2003.
[2] رشیدی الاشتی، علی "تاثیر خرابی های پیش رونده بر عملکرد لرزه ای سازه­های ساختمانی فولاد" .پایان نامه کارشناسی ارشد. دانشگاه صنعتی نوشیروانی بابل، 1391.
[3] اکبرپور، سوده  " خرابی پیش رونده و تاثیر آن بر عملکرد لرزه ای قابهای خمشی بتن آرمه" .پایان نامه کارشناسی ارشد. دانشگاه علوم و. فنون مازندران، 1389 .
[4] J. Kim, J.-H. Park, and T.-H. Lee, “Sensitivity analysis of steel buildings subjected to column loss”, Engineering Structures, vol. 33, pp. 421-432, 2011.
[5] Uwe Starossek, Marco Haberland,(2006), “Evaluating Measures of Structural Robustness”, ASCE Structures Congress, Austin, Texas, USA .
[6] Unified Facilities Criteria (UFC). Design of Buildings to Resist Progressive Collapse, Department of Defense, 2005
[7] Kim J, Kim T, “Assessment of progressive collapse-resisting capacity of steel moment frames”, Journal of Constructional Steel Research ,2009,65 169–179
[8] Feng Fu, “3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings - Parametric study, Engineering Structures”, 2010, 32  3974–3980
[9] قلی زاده.امین، رضانیا.معصومه ، مرادبیگی.حیدر . 2013 . " اثر ارتفاع سازه­ها روی خرابی پیش رونده در میانقابهای بتنی با قاب خمشی".
[10] مبحث دهم مقررات ملی ساختمان. طرح و اجرای ساختمانهای فولادی. دفتر تدوین و ترویج مقررات ملی. 1392.
[11] استاندارد 2800. آیین نامه طراحی ساختمانها در برابر زلزله. مرکز تحقیقات مسکن. ویرایش چهارم. 1393
[12] مبحث ششم مقررات ملی ساختمان.بارهای وارده بر ساختمان. دفتر تدوین و ترویج مقررات ملی. 1392.
[13] نشریه 360. دستورالعمل بهسازی لرزه ای ساختمان های موجود. دفتر امور فنی،تدوین معیارها و کاهش خطر پذیری زلزله1392.
[14] FEMA 356, Pre standard and commentary for the seismic rehabilitation of buildings, Washington (DC):         Federal Emergency Management Agency, 2000
[15] National Institute of Standard and Technology (NIST). Best practices for reducing the potential for progressive collapse in buildings (Draft), 2006
[16] Menchel Kfir, Progressive collapse: comparison of main standards, formulation and validation of new computational procedures, PHD thesis, 2009
[17] H. Wibowo & D.T Lau, Seismic Progressive Collapse Qualitative Point of View, Civil Engineering Dimension,2009 Vol.11.No.1,8-14
[18] L.-M. Zhang and X.-L. Liu, "Learning from the Wenchuan earthquake: key problems in collapse analysis of structures," in Proceedings of the 14th World Conference on Earthquake Engineering, Chinese Association of Earthquake Engineering, Beijing, China, 2008.
[19] Elkholy Said, Numerical Study of Collapse Behavior of Steel Buildings due to Extremely High Seismic Load,JSCE,2005.
[20] Telford Thomas, Progressive collapse of structures,CPI Antony Rowe,UK,2009
[21] Nielsen Jannie, Probabilistic Analysis of the Robustness of Earthquake resistant Steel Structures, Master thesis, Faculty of engineering , science and medicine, Aalborg University,2009. 
[22] Lew, H. and Ellingwood, B.R. and Smilowitz, R. and Carino, N., “Best Practices for Reducing the Potential for Progressive Collapse in Buildings”,  2006.
[23] Lew, H.s., “Analysis Procedures for Progressive Collaps of Building”,  2007.
[24] Liu Min, Progressive collapse design of seismic steel frames using structural optimization, Journal of Constructional Steel Research , 2011, 67 322–332.
[25] FEMA. Quantification of building seismic performance factors. FEMA P695. (June 2009), Federal Emergency Management Agency, Washington, DC.