Seismic Microzonation of Tehran based on deterministic seismic hazard analysis and seismic indexes around faults

Document Type : Original Article

Authors

1 Assistant Professor, Faculty of Civil & Environmental Engineering, Shahid Beheshti University, Tehran, Iran

2 MSc of Earthquake Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Tehran has situated over several active faults such as Mosha, North Tehran, North Ray and South Ray faults and has experienced strong earthquakes in its history. It is possible the same earthquake occurs and result to large damages and many casualties. In this paper, seismic hazard analysis of Tehran city has been done with deterministic seismic hazard analysis, using specification of Tehran scenario active faults, soil conditions, average shear wave velocity extracted from several researches on Tehran area. To do this, a credible attenuation relation which considers effects of near source that has appropriate adaptation with Iran records has been used. In the following, deterministic seismic hazard analysis considering earthquake at closest distance to each mesh was done. Then, seismic output such as PGA, PGV, PGD and SA for all meshes of Tehran and their soil condition was done for each fault scenario. Then, maximum of seismic index was calculated for each and all scenarios on GIS and the results were evaluated. One of the main results of this article is calculation of seismic indexes near faults, so spectral acceleration near to North Tehran or Ray Faults with soil types I, II and III predicted as 1.2, 1.5 and 2g corresponding to predominant period of short buildings and it means high damages on areas over or near faults.

Keywords

Main Subjects


[1] Harvard University, 2009. Seismology department Web page, http://www.seismology.harvard.edu/, accessed 20 April 2009
[2] International Institute of Earthquake Engineering and Seismology (IIEES), 2003. Major Active faults of Iran.
[3] Japan International Cooperation Agency. (2000). The Study on Seismic Microzoning of the Greater Tehran Area in the Islamic Republic of Iran. Tehran
]4[جعفری، محمد کاظم (1381). مطالعات تکمیلی ریز پهنه بندی لرزه ای جنوب تهران، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله.
]5[جعفری، محمدکاظم (1381). ریز پهنه بندی لرزه ای شمال تهران از دیدگاه شرایط ساختگاهی، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله.
[6] Zafarani, H., Noorzad, A., Ansari, A., and Bargi, K. (2008). Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in Greater Tehran. Soil Dynamics and Earthquake Engineering, 29 (2009) 722–741
[7] Campbell, K. W., and Bozorgnia, Y. (2008). NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s. Earthquake Spectra, Volume 24, pages 139–171
]8[جعفری، محمد کاظم؛ رزمخواه، آرش؛ کشاورز بخشایش، محمد،  (1382). پهنه بندی سرعت موج برشی آبرفتهای گستره تهران. نشریه دانشکده فنی، جلد37، شماره2، شهریور ماه 1382، از صفحه 213 تا 225
]9[ غیومیان، جعفر؛ خامه چیان، ما شا الله؛ موحدی، احمد علی (1382). ارائه روابط تخمین سرعت موج برشی نهشته های کواترنر در محدوده مرکزی تهران. مجموعه مقالات هفتمین همایش انجمن زمین شناسی ایران، دانشگاه اصفهان، 1382
]10[ مجموعه استانداردها و آیین نامه­های ساختمانی ایران؛ (1393)؛ " آیین نامه طراحی ساختمان­ها در برابر زلزله (استاندارد 2800)"؛ ویرایش چهارم، نشر مرکز تحقیقات راه، مسکن و شهرسازی
[11] Shoja-Taheri, J., Naserieh, S., and Hadi, G. (2008 ). A test of the applicability of NGA models to the strong ground-motion data in the Iranian plateau. Journal of Earthquake Engineering 14, 278–292.
[12] Boore, D. M., and Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal 99 component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra 24, 99–138.
[13] Saffari, H., Kuwata, Y., Takada, S., and Mahdavian, A. (2012). Updated PGA, PGV, and Spectral Acceleration Attenuation Relations for Iran. Earthquake Spectra, Volume 28, pages 257–276