Assessment of Accuracy the Nonlinear Static Analysis in Determining Behavior Factor Reinforced Concrete Moment-Resisiting Frames

Document Type : Original Article

Authors

1 Assistant Professor, Department of Civil Engineering, University of Kurdistan

2 MSc Student, Department of Civil Engineering, University of Kurdistan

Abstract

Common methods analysis and design of structures are based according to elastic analysis and and reduction of earthquake forces. This reduction design load in the codes is done by the behavior factors. Applying the non-linear static analysis and make ideals pushover curves obtained from its, including conventional in determining behavior factor. The purpose of this study is evaluating the accuracy of nonlinear static analysis in determining behavior factor reinforced concrete moment-resisiting framesby performing nonlinear incremental dynamic analysis that is a more accurate analysisby considering the damping, dynamic nature of the load and higher modes effects. The response modification factors for reinforced concrete moment-resisiting framesobtained in this study by performing nonlinear incremental dynamic analysis  are difference about %13 those obtained by pushover analyses analysis. The results of nonlinear incremental dynamic analysis are generally more than those obtained from pushover analysis.

Keywords


 [1] تنسیمی، ع؛ معصومی، ع؛ «محاسبه ضریب رفتار قاب­های خمشی بتن مسلح»؛ مرکز تحقیقات ساختمان و مسکن وزارت مسکن و شهرسازی، 1384
[2] Consenza, E.; De Luca, A.; Faella, C. and Piluso, V.; “A Rational Formulation for the Q-Factor in Steel Structures”; Proc. Of ninth word conference on earthquake engineering, No.8, (1988)
[3] ATC.; “Structural Response Modification Factors”;  ATC-19 Report, Applied Technology council, (1995)
[4] Uang, C.; “Establishing R (or Rw) and Cd factors for building seismic provisions”; Journal of Structural Engineering, No. 117,  (1991), 19–28
[5] Krawinkler, H. and Nassar, A. A.; “Seismic Design  based  on  Ductility  and  Cumulative  Damage Demands and Capacities”; Elsevier Applied Science, (1992)
[6] Newmark, N. M. and Hall, W. J.; “Earthquake spectra and design”,  Earthquake Engineering Research Institute., (1982)
[7] Miranda, E. and Bertro, V. V.; “Evaluation of strength reduction factor for earthquake-resistance design”; Earthquake Spectra., (1994)
[8] Hwang­, H. H. M. and  Jaw,  J. W.; “Statistical  Evaluation  of  Response  Modification  Factors  for Reinforced  Concrete  Structures”; National  Center  for  Earthquake Engineering Research, (1989)
[9] Elnashai, A.S.­ and Mwafy, A. M.; “Calibration of Force Redution  Factors  of RC Buildings”; Journal of  Earthquake  Engineering Research, No.6, (2002), 239-273
[10] Mondal, A.; Ghosh, S.; Reddy and G.R.; “Performance-based evaluation of the response reduction factor for ductile RC frames”; Journal of Engineering Structures Research, No. 56, (2013) 1808-1819
 [11] صمیمی­فر، م؛ وطنی، ا؛ «تعیین ضریب رفتار قاب­های خمشی بتن مسلح با استفاده از تحلیل دینامیکی غیرخطی»؛ ششمین کنگره ملی مهندسی عمران، 1390
[12]­ Kim, J. and Choi, H., "Response modification factors of chevron-braced frames", Engineering Structures, vol. 27, pp. 285-300, (2005).
 [13] شوشتری، ا؛ غزنوی زاده، ح؛ «بررسی ضریب رفتار ساختمان­های بتن مسلح در تحلیل لرزه­ای»؛ سومین کنفرانس ملی عمران شهری، 1387
[15] ACI; “Building Code Requirements for Structural Concrete(ACI318-99) and Commentary (ACI318R-99) ”; American Concrete Institute. (1999)
[16]  کمیته دائمی بازنگری آیین­نامه طراحی ساختمان­ها در برابر زلزله؛ «استاندارد 2800» مرکز تحقیقات ساختمان ومسکن؛ 1384