Nonlinear analysis of concrete gravity dams under normal fault motion

Document Type : Original Article

Authors

1 PhD candidate, Civil Engineering Department, Babol Noshirvani University of Technology

2 Associate professor, Civil Engineering Department, Babol Noshirvani University of Technology

3 Professor, Civil Engineering Department, Tarbiat Modarres University

Abstract

The importance of the seismic behavior of concrete gravity dams in their safety evaluation and stability is inevitable. Many factors affect the prediction of the behavior of concrete dams such as dam-foundation-reservoir interaction, dam and foundation cracking and also displacement due to fault movement that could causes nonlinear behavior. The aim of this study is nonlinear analysis of concrete gravity dams, including displacement caused by normal fault movement in the dam foundation. For this purpose, dam-foundation-reservoir system is modeled using Lagrangian method and analysis of system is done by finite element method. The coordinate smeared crack model based on the nonlinear fracture mechanics is used for crack modeling in the dam body and foundation. Using two separate method including split node technique and contact element, the fault movement are modeled and the position and angle of fault has been studied. To verify the results, dam crest displacement and crack profile in the body of a concrete gravity dam is presented as an example. The results show that low fault movement causes the cracks in the dam body and could be jeopardizes the stability and safety of concrete dam.

Keywords


[1] Rashid, Y.R.; “Analysis of prestressed concrete pressure vessels”; Nuclear Engineering and Design, Vol. 7 (1968) 334–344.
[2] Rots, J.G., de Borst, R.; ”Analysis of mixed-mode fracture in concrete”; Journal of Engineering Mech.(ASCE), Vol. 113 (1987) 1739-1758.
[3] Bhattacharjee, S.S., and Leger, P.; “Application of NLFM Models to Predict Cracking in Concrete Gravity Dams”; Journal of Structural Engineering, ASCE, Vol. 120 (1994) 1255-1271.
[4]واثقی امیری، ج؛ «تحلیل دینامیکی غیرخطی ناشی از گسیختگی برشی- کششی سدهای بتنی وزنی با در نظر گرفتن اندرکنش دینامیکی تحت زلزله»؛  پایان­نامه دکتری تخصصی، دانشگاه تربیت مدرس، 1376.
[5] Mirzabozorg, H., Ghaemian, M.; “Three dimensional nonlinear seismic analysis of concrete dams including dam-reservoir interaction”; Ph.D thesis, Sharif University (2003).
[6] Mirzabozorg, H., Ghaemian, M.; “Nonlinear behavior of mass concrete in three-dimensional problems using a smeared crack approach”; Earthquake Engineering and Structural Dynamics, Vol. 34 (2005) 247-269.
[7] Cai., Q.; ”Finite element modeling of Cracking in gravity dams”; PhD thesis, university of Pretoria, (2007).
[8] Calayir, Y., Karaton, M.; “Seismic Fracture Analysis of Concrete Gravity Dams including Dam-Reservoir Interaction”; Computers and Structures, Vol. 83 (2005) 1595-1606.
[9] Kalani Sarokolayi, L., Navayi Neya, B. and Vaseghi Amiri, J.; “Nonlinear dynamic analysis of concrete gravity dams considering rotational component of ground motion”; Int. j. of civil engineering, Vol. 13 (2015) 16-29.
[10] Alijani-Ardeshir, M., Navayi Neya, B. and Ahmadi, M.T.; “Comparative Study of Different Smeared Crack Models for Concrete Dam”; Journal of GRADEVINAR (2016) In Press.
[11]علیجانی اردشیر، م.، نوائی­نیا، ب.، احمدی، م.ت؛ «پاسخ دینامیکی سدهای بتنی وزنی با احتساب ترک اندود چرخان و چندجهته ثابت»؛  مجله علمی-پژوهشی شریف، 1395، در دست چاپ.
[12] Goodman, R.E., Taylor, R.L., and Brekkle, T.L.; “A model for the mechanics of jointed rocks”; J. Soil Mech. and Foundation, Proc. ASCE, Vol. 94 (1968) 637-658.
[13] Smith, A.T.; “Time-depended strain accumulation and release at Island Arcs: implication for the 1946 Nakaido Earthquake”; Ph.D. Thesis, MIT, Cambridge (2004).
[14] Jungels, P.H., Frazier, G.A.; “Finite element analyses of the residual displacement for an earthquake rupture: source parameter for the San Fernando earthquake”; J. Geophys. Res., Vol. 78 (1973) 5062-5083.
[15] Melosh, H.J., Raefsky, A.; “Simple and Efficient Method for Introducing Fault into Finite Element Computation”; Bulletin of seismological Society of America (1981).
[16] Hampel, A.; “Along strike variations of the slip direction on normal Faults: Insights from three-dimensional finite-element models”; Journal of structural geology, vol. 30 (2008) 21-28.
[17] Angelier, J., Hu, J.C.; “Three-dimensional modeling of the behavior of the oblique convergent boundary of southeast Taiwan”; Tectonophysics, Vol. 333 (2011) 261-276.
[18] Ramancharla, P. K., Hatem, T., Meguro, K.; “Dynamic modeling of dip-slip fault for studying ground surface deformation using applied element method”; 13th World Conference on Earthquake Engineering, Vancouver, Canada (2004) 832.
[19] Argia, y.; “Safety evaluation for dams against different modes of surface faults induced by earthquakes”; Earthquake Resistant Engineering Structures, Vol. 120 (2011).
[20] صادقیان، ع؛ «اثر گسل در ساختگاه بدنه سدهای بتنی قوسی»؛ پایان­نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران، 1388.
[21] کریمی، ز؛ «بررسی رفتار لرزه ای غیرخطی سد بتنی وزنی در اثر حرکت گسل در فونداسیون»؛ پایان­نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران،1389.
[22] Allen, C.R., Cluff, L.S.; “Active faults in dam foundations: An update”; Proc. 12th World Conf. on Earthquake Engineering, Beijing, China, (2000) October 12-17.
[23] Wieland, M., Brenner, R.P., and Bozovic, A.; “Potentially active faults in the foundations of large dams Part 2: Design aspects of dams to resist fault movements”; Special Session S13, Proc. 14th World Conf. on Earthquake Engineering, Beijing, China, (2008) October 12-17.
[24] Bhattacharjee, S. S.; “Smeared fracture analysis of concrete gravity dams for static and seismic loads”; PhD thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada (1993).
[25] Navayi Neya, B.; “Mathematical modeling of concrete gravity dams under earthquake loading considering construction joints”; Ph.D thesis, Moscow Power Engineering Institute (1998).
[26] Arabshahi, H.R., Lotfi, V.; “Nonlinear dynamic analysis of arch dams with joint sliding mechanism”; Engineering Computations, Vol. 26 (2009) 464-482.