Investigation the effects of HPFRCC materials on the robustness of RC frames subjected to progressive collapse

Document Type : Original Article

Authors

1 PhD student in structural engineering, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran

2 Assistant Professor, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

Reinforced Concrete (RC) Frames cover a large part of our country's structures. Neglect progressive collapse in this type of structures can lead to significant human and financial costs. Most of the regulations related to RC frames have comprehensive measures for resistance to seismic forces but there are only a few general solutions to increase the robustness to progressive collapse have been provided. In this study the effects of using High Performance Fiber Reinforced Cementitious Composite materials (HPFRCC) in the beam-column joints and the effects of its use on the robustness of RC frames against progressive collapse have been evaluated. For this purpose, after verifying the simulations with experimental tests using Opensees software the robustness of two 10-story RC frames under progressive collapse has been evaluated. The performance of the samples was measured using the robustness index proposed by Fascetti et al. The Fascetti robustness index is a combination of nonlinear dynamic and nonlinear static analyzes that evaluate the structural robustness to progressive collapse under multi columns removing scenario. The results of the sample analysis show the use of HPFRCCs materials in the joints beam-column can dramatically improve the robustness of concrete frames against progressive collapse by increasing the stiffness and ductility of the beam-column joints.

Keywords

Main Subjects


[1] Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315-323. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(315)
[2] Unified Facilities Criteria (UFC)-DoD., (2205), Design of buildings to resist progressive collapse. Department of Defense.
[3] GSA., (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. The US General Services Administration.
[4] Yi, W. J., Yi, F., & Zhou, Y. (2021). Experimental Studies on Progressive Collapse Behavior of RC Frame Structures: Advances and Future Needs. International Journal of Concrete Structures and Materials, 15(1), 1-23. https://doi.org/10.1186/s40069-021-00469-6
[5] Khizab, B., Sadeghi, A., Hashemi, S. V., Mehdizadeh, K., & Nasseri, H. (2021). Investigation the performance of Dual Systems Moment-Resisting Frame with Steel Plate Shear Wall Subjected to Blast Loading. Journal of Structural and Construction Engineering, 8(8), 102-127. doi: 10.22065/jsce.2020.177510.1820
[6] Yaghoubi, M., Aghayari, R., Hashemi, S. (2021). Investigation of progressive collapse in reinforced concrete buildings with slab-wall structural system. Journal of Rehabilitation in Civil Engineering, 9(3), 40-60. doi: 10.22075/jrce.2021.21194.1439.
[7] Sadeghi, A., Hashemi, S., Mehdizadeh, K. (2021). Probabilistic Assessment of Seismic Collapse Capacity of 3D Steel Moment-Resisting Frame Structures. Journal of Structural and Construction Engineering, 8(7), 75-101. doi: 10.22065/jsce.2020.220306.2083.
[8] Panahi, S., & Zahrai, S. M. (2021, June). Performance of typical plan concrete buildings under progressive collapse. In Structures (Vol. 31, pp. 1163-1172). Elsevier. https://doi.org/10.1016/j.istruc.2021.02.045
[9] Karimiyan, S. (2020). Seismic Progressive Collapse Evaluation in 3 Story Reinforced Concrete Buildings due to Inner Column Removal. Journal of Structural and Construction Engineering, 7(Special Issue 1), 206-226. doi: 10.22065/jsce.2018.142459.1617.
[10] Ashrafi, H., Hassanzadeh, S. (2018). Investigation of progressive collapse in reinforced concrete frames, considering end rigid zones and various scenarios for column removal duration. Journal of Structural and Construction Engineering, 5(3), 66-84. doi: 10.22065/jsce.2017.86030.1172.
[11] ACI (2019) Building code requirments for structural concrete (ACI318–19). American Concrete Institute.
[12] Hemmati, A., Kheyroddin, A., Sharbatdar, M., Park, Y., & Abolmaali, A. (2016). Ductile behavior of high performance fiber reinforced cementitious composite (HPFRCC) frames. Construction and Building Materials115, 681-689. https://doi.org/10.1016/j.conbuildmat.2016.04.078
[13] Saghafi, M. H., Golafshar, A., & Safakhah, S. (2020). Evaluation of nonlinear behavior of High Performance Fiber Reinforced Cementitious Composite (HPFRCC) frames. Journal of Structural and Construction Engineering, 7(3), 214-238. doi: 10.22065/jsce.2018.134617.1574.
[14] Fascetti, A., Kunnath, S. K., & Nisticò, N. (2015). Robustness evaluation of RC frame buildings to progressive collapse. Engineering Structures86, 242-249. https://doi.org/10.1016/j.engstruct.2015.01.008
[15] McKenna F, Fenves GL, Scott MH. Open system for earthquake engineering simulation. University of California, Berkeley; 2013. <http://opensees. berkeley.edu>.
[16] معاونت امور مسکن وساختمان؛ وزارت مسکن و شهرسازی. (1392). بارهای وارد بر ساختمان. تهران. مبحث ششم مقررات ملی ساختمان.
[17] معاونت امور مسکن وساختمان؛ وزارت مسکن و شهرسازی. (1392). طرح و اجرای ساختمانهای بتن آرمه. تهران. مبحث نهم مقررات ملی ساختمان.
[18] مرکز تحقیقات ساختمان و مسکن. (1394). طراحی ساختمانها در برابر زلزله. استاندارد 2800 ویرایش چهارم. تهران. مقررات ملی ساختمان .
[19] Computers and structures- Inc, (2014). ETABS2015 Software. Berkeley, CA.
[20] El-Ariss, B., Elkholy, S., & Shehada, A. (2022). Benchmark Numerical Model for Progressive Collapse Analysis of RC Beam-Column Sub-Assemblages. Buildings12(2), 122. https://doi.org/10.3390/buildings12020122
[21] Feng, D., Ren, X., & Li, J. (2016). Implicit gradient delocalization method for force-based frame element. Journal of Structural Engineering142(2), 04015122. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001397
[22] Feng, D. C., & Ren, X. D. (2017). Enriched force-based frame element with evolutionary plastic hinge. Journal of Structural Engineering143(10), 06017005. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001871
[23] Han, T. S., Feenstra, P. H., & Billington, S. L. (2003). Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading. Structural Journal100(6), 749-757.
[24] Xu, G., & Ellingwood, B. R. (2011). An energy-based partial pushdown analysis procedure for assessment of disproportionate collapse potential. Journal of Constructional Steel Research67(3), 547-555. https://doi.org/10.1016/j.jcsr.2010.09.001
[25] Khandelwal, K., & El-Tawil, S. (2011). Pushdown resistance as a measure of robustness in progressive collapse analysis. Engineering Structures33(9), 2653-266. https://doi.org/10.1016/j.engstruct.2011.05.013
[26] Yi, W. J., He, Q. F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal105(4), 433.
[27] Saghafi, M. H., Shariatmadar, H., & Kheyroddin, A. (2019). Seismic behavior of high-performance fiber-reinforced cement composites beam-column connection with high damage tolerance. International Journal of Concrete Structures and Materials13(1), 1-20. https://doi.org/10.1186/s40069-019-0334-3
[28] Uang, C. M. (1991). Establishing R (or R w) and C d factors for building seismic provisions. Journal of structural Engineering117(1), 19-28. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(19)