Out-of-Plane Behaviour of Brick Masonry Infilled Walls with Openings Stiffened with FRP Strips in Reinforced Concrete Frames

Document Type : Original Article

Authors

1 Professor/University of Isfahan

2 MSc in Structural Engineering

Abstract

In this paper, the out-of-plane behaviour of 30 models including two types of brick masonry walls with openings of 6000×3000×300 mm3 and 3000×3000×300 mm3 in two cases of unstiffened and stiffened with FRP strips under cyclic loading has been studied. The width, height and location of the openings have been the variables. A non-linear behaviour has been assumed for the materials and the finite element code ANSYS has been used for analysis. Obtained results indicate that the existence of the opening causes the 3 m wall to crack earlier than the 6 m wall. In 3 m walls, by approaching the opening to the upper corner of the wall the maximum displacement at cracking decreases and this maximum value increases by stiffening the opening. But in 6 m walls with an opening, the effect of the location and dimensions of the opening on this maximum displacement is less. In 3 m walls, by increasing the dimensions of the opening or decreasing its distance from the wall top corner the dissipated energy decreases. This value increases by stiffening the opening. But in 6 m walls, the dissipated energy is less dependent on the opening, although stiffening by FRP strips increases the dissipated energy with respect to unstiffened walls.

Keywords

Main Subjects


[1] مشخصات فنی عمومی کارهای ساختمانی، معاونت برنامه­ریزی و نظارت راهبردی رئیس جمهور، دفتر نظام فنی اجرایی، نشریه شماره 55، تهران، 1388.
[2] شوشتری، الف.، سمیعی، الف.، "تاملی بر تاثیر میانقاب­های آجری در عملکرد لرزه­ای سازه­های بتنی"، فنی و مهندسی مدرس، پاییز 1386، شماره 29، صص 31-50.
[3] آیین­نامه طراحی ساختمان­ها در برابر زلزله، استاندارد 2800، ویرایش چهارم، مرکز تحقیقات راه مسکن و شهرسازی، 1394.
[4] Basic Analysis Guide for ANSYS 14, SAS IP Inc., New York , 2011.
[5] رحمانیان، ف.، بارانی، الف.، "نیروی خارج صفحه وارد بر میانقاب‌ها و بررسی کفایت روابط آیین‌نامه"، چهارمین کنگره ملی مهندسی عمران، دانشگاه تهران، 1387.
[6] مستوفی نژاد، د.، مهینی، س.، کریمی، الف.، "مدل‌سازی پانل مصالح بنایی تحت بار خارج از صفحه و مقاوم‌سازی آن به وسیله کامپوزیت‌های FRP"، پنجمین کنگره ملی مهندسی عمران، دانشگاه فردوسی مشهد، 1389.
[7] Gilstrap, J.M., Dolan, C.W., "Out-of-plane bending of FRP-reinforced masonry walls", Composites Science and Technology 58 (1998): 57-63.
[8] Velazquez-Dimas, J.I., Ehsani, M.R., "Modeling out-of-plane behavior of URM walls retrofitted with fiber composites science", Composites for Construction 34 (2000): 24-32.
[9] Da-Porto, F., Mosele, F., Modena, C., "Experimental testing of tall reinforced masonry walls under out-of-plane actions", Construction and Building Materials 24 (2010): 2559-2571.
[10] بهشتی اول، ب.، محمد‌زاده، م.، "رفتار قاب­های فولادی با میانقاب تحت تحریک زلزله در دو جهت"، ششمین کنفرانس بین المللی زلزله شناسی و مهندسی زلزله، دانشگاه خواجه نصیر الدین طوسی، 1390.
[11] Mohyeddin, A., Goldsworthy, H.M. Gad, E.F., "FE modelling of RC frame with masonry infill panels under in-plane and out-of-plane loading", Engineering Structures 51 (2013): 73-87.
[12] Agnihotri, P., Singhal, V., Rai`, D., "Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls", Engineering Structures 57 (2013): 1-11.
[13] Anania, L., D'Agata, G., Giaquinta, C., Badala, A., "Out-of-plane behavior of calcareous masonry panels strengthened by CFRP", APCDBEE Procedia 9 (2014): 401-406.
[14] Bui, T.T., Limam, A., "Out-of-plane behavior of hollow concrete block masonry wall unstrengthened and strengthened with CFRP composite", Composites: Part B 67 (2014): 527-542.
[15] Batikha, M., Alkham, F., "The effect of mechanical properties of masonry on the behavior of FRP-strengthened masonry-in-filled RC frame under cyclic load", Composite Structures 134 (2015): 513-522.
[16] Furtado, A., Rodrigues, H., Arede, A., "Modelling of masonry infill walls participation in the seismic behavior of RC buildings using OpenSees", Advanced Structure Engineering 7 (2015): 117-127.
[17] Furtado, A., Rodrigues, H., “Experimental evaluation of out-of-plane capacity of masonry”, Engineering Structures 111 (2018): 48-63.
[18] Chen, W.W., Yeh, Y.K., Hwang, S.J., Lu, C.L., Chen, C.C., “Out-of-plane seismic behavior and CFRP retrofitting of RC frames infilled with brick walls”, Engineering Structures 34 (2012): 213-224.
[19] Akhoundi, F., G. Vasconcelos, and P. B. Lourenço. "Out-of-plane behavior of masonry infill walls." Journal of Seismology and Earthquake Engineering 19.2 (2017): 113.
[20] Al Hanoun, M. H., Abrahamczyk, L. and Schwarz, J. "Macromodeling of in-and out-of-plane behavior of unreinforced masonry infill walls." Bulletin of earthquake engineering 17.1 (2019): 519-535.
[21] Pantò, B., L. Silva, G. Vasconcelos, and P. B. Lourenço. "Macro-modelling approach for assessment of out-of-plane behavior of brick masonry infill walls." Engineering Structures 181 (2019): 529-549.
[22] Sadeghi, A., and M, Pouraminian. "An investigation of the vulnerability of Arge Tabriz (Tabriz Citadel)." 8th International Masonry Conference in Dresden, July. 2010.
[23] Pouraminian, M., Pourbakhshian, S. and Hosseini, M.M.. "Reliability analysis of Pole Kheshti historical arch bridge under service loads using SFEM." Journal of Building Pathology and Rehabilitation 4.1 (2019): 21.
[24] Lourenco, P., Rots, J., Blaauwendraad, J., “Two approches for the analysis of the masonry structures: Micro and Macro-Modeling”, Heron 40 (1995): 313-40.
[25] Kalali, A., Kabir, M.Z., “Cyclic behavior of perforated masonry walls strengthed with glass fiber reinforced polymers”, Scientia Iranica 19.2 (2012): 151-65.
[26] Binda, L., Fontana, A., Frigerio, G., “Mechanical behaviour of brick masonris derived from unit and mortar characteristics”, 8th International Brick and Block Masonry Conference, London: Elsevier Applied Science, (1988): 205-16.
[27] Radyab Engineered Solution, “Seismic retrofitting with FRP”, Available online: Oct. 25, 2019, www.radyab.co/fa/frp.
[28] Chen, W. F., Han, D. J., “Plasticity for structural engineers,” Springer, New York,1988.
[29] Willam, K.J. and E.P. Warnke, “Constitutive model for the triaxial behaviour of concrete”, Project International Associaction Bridge Structural Engineers, Report 19, Section III, Zurich, (1975): 30-36.
[30] Betti, M., Orlando, M., and Vignoli, A., “Static behavior of an Italian medival castle: damage assessment by numerical modelling,” Computers and Structures, Vol. 89, No. 21-22, PP. 1956-1970, 2011.
[31] Pineda, P., Roberdor, M., and Gil-Marti, M., “Seismic damage propagation prediction in ancient masonry structures: an application in the non-linear range via numerical models,” The Open Construction Building Technolgy Journal, Vol. 5, pp. 71-79, 2011.
[32] Goldenblat, I., Kopnov, V.A., “Strength of reinforced plastic in the complex stress state”, Polymer Mechanics, 1(1966): 54-60, 1966.
[33] Leandro, R.A., Antonio, B., "Drucker-Prager criterion", Rock Mechanics and Rock Engineering, 2012, Vol. 45, pp. 995-999.
[34] ASTM C67 / C67M-18, Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile, ASTM International, West Conshohocken, PA, 2018.
[35] ACI Committee 440, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI 440.1R-06, American Concrete Institute, Farmington Hills 2006.
[36] ASTM C469 / C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, 2014.
[37] سازمان مدیریت وبرنامه ریزی کشور، معاونت امور فنی، دفتر امور فنی، "دستورالعمل بهسازی لرزه­ای ساختمان­های بنایی غیر مسلح موجود"، شماره 376، 1386.
[38] NTCM, "Complementary technical norm for the design and construction of masonry structures", Gaceta Oficial del Distrito Federal, Mexico, 2004.