Collapse Fragility Curves Development with Considering of Modeling Uncertainties Using LHS Simulation and Artificial Neural Network

Document Type : Original Article

Authors

1 Ph.D. Candidate, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Assistant Professor, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

3 Assistant Professor, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

Collapse performance evaluation of structures has been a concern for researchers due to its complexity and uncertainty in modeling and simulation. Concentrate plastic hinges are best candidates for modeling collapse behavior of structures. Collapse fragility curves are affected by various sources of uncertainty. Existing uncertainties in modified Ibarra and Krawinkler moment-rotation model for concrete moment frame buildings were investigated in this paper. LHS simulation method was used to generate random variables considering the correlation among modeling uncertainties in one component and two structural components. Collapse responses including mean collapse capacity and standard deviation were obtained for each simulation by generating random samples for uncertainties using incremental dynamic analysis (IDA). As much effort is needed for implementation of IDA, MLP artificial neural networks, GMDH artificial neural network and response surface method were used to estimate and anticipate the collapse behavior of the structure. Results show that using above methods will lead to high accuracy anticipations with an error of less than 10% for GMDH neural network and an error of less than 7% for MLP and response surface methods.

Keywords

Main Subjects


[1]           A. B. Liel, C. B. Haselton, G. G. Deierlein, and J. W. Baker. (2009). Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings, Structural Safety, 31(2), Pages 197-211.
[2]           F. Zareian and H. Krawinkler.(2007).Assessment of probability of collapse and design for collapse safety, Earthquake Engineering & Structural Dynamics, 36(13), Pages 1901-1914.
[3]           F. Zareian, H. Krawinkler, L. Ibarra, and D. Lignos.(2010).Basic concepts and performance measures in prediction of collapse of buildings under earthquake ground motions, The Structural Design of Tall and Special Buildings, 19(1-2), Pages 167-181.
[4]           B. Ugurhan, J. Baker, and G. Deierlein. (2014). Uncertainty estimation in seismic collapse assessment of modern reinforced concrete moment frame buildings, in Proceedings of the 10th National Conference in Earthquake Engineering.Anchorage,Alaska.
 [5]          E. Khojastehfar, S. B. Beheshti-Aval, M. R. Zolfaghari, and K. Nasrollahzade. (2014). Collapse fragility curve development using Monte Carlo simulation and artificial neural network, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(3),Pages 301-312.
[6]           G. G. Deierlein, A. M. Reinhorn, and M. R. Willford.(2010). Nonlinear structural analysis for seismic design, NEHRP seismic design technical brief, vol.4, Pages 1-36.
[7]           Federal Emergency Management Agency. (2000) FEMA 350: Recommended Seismic Design Criteria for New Steel Moment‐Frame Buildings, SAC joint Venture, Washington, DC
[8]           S. B. Beheshti-Aval, E. Khojastehfar, M. Noori, and M. Zolfaghari.(2015). A comprehensive collapse fragility assessment of moment resisting steel frames considering various sources of uncertainties, Canadian Journal of Civil Engineering, 43( 2), Pages 118-131.
[9]           L. F. Ibarra and H. Krawinkler. (2005). Global collapse of frame structures under seismic excitations. Report No.152, Pacific Earthquake Engineering Research Center Berkeley, CA.
[10]         L. F. Ibarra, R. A. Medina, and H. Krawinkler. (2005). Hysteretic models that incorporate strength and stiffness deterioration, Earthquake engineering & structural dynamics, 34(12), Pages 1489-1511.
[11]         C. B. Haselton and G. G. Deierlein. (2008). Assessing seismic collapse safety of modern reinforced concrete moment-frame buildings, Report No. PEER 2007/08, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
[12]         C. B. Haselton, A. B. Liel, S. T. Lange, and G. G. Deierlein. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings, Report No. PEER 2007/03, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
[13]         D. G. Lignos and H. Krawinkler.(2010). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137(11), Pages 1291-1302.
[14]         O. C. Celik and B. R. Ellingwood. (2010). Seismic fragilities for non-ductile reinforced concrete frames–Role of aleatoric and epistemic uncertainties, Structural Safety, 32(1), Pages 1-12.
[15]         J. Park and P. Towashiraporn.(2014).Rapid seismic damage assessment of railway bridges using the response-surface statistical model, Structural Safety, 47,Pages 1-12.
[16]         C. C. Mitropoulou and M. Papadrakakis. (2011) Developing fragility curves based on neural network IDA predictions, Engineering Structures, 33(12), Pages 3409-3421.
[17]         M. Zolfaghari, A. S. BEHESHTI, and E. Khojastehfar. (2015). Uncertainty analysis using fuzzy randomness method towards development of fragility curves for moment-resisting steel structures, SCIENTIA IRANICA, 22(1), Pages 131-143.
[18]         F. K. G. Jough and S. Şensoy. (2016). Prediction of seismic collapse risk of steel moment frame mid-rise structures by meta-heuristic algorithms, Earthquake Engineering and Engineering Vibration, 15(4), Pages 743-757.
[19]         K. Mehdizadeh and A. Karamodin. (2017). Probabilistic assessment of steel moment frames incremental collapse (ordinary, intermediate and special) under earthquake, Journal of Structural and Construction Engineering, 4(3), Pages 129-147.
[20]         F. Karimi Ghaleh Jough and S. Beheshti Aval. (2018). Uncertainty analysis through development of seismic fragility curve for an SMRF structure using an adaptive neuro-fuzzy inference system based on fuzzy C-means algorithm, Scientia Iranica, 25(6), Pages 2938-2953.
[21]         K. Mehdizadeh and A. Karamodin. (2018). Investigation of the Effect of Uncertainty of the Ibara-Madina-krawinkler Model Parameters on Seismic Collapse Capacity in Steel Moment Resisting Frames, Journal of Structural and Construction Engineering.( Published online).
[22]         D. Vamvatsikos and C. A. Cornell. (2002). Incremental dynamic analysis, Earthquake Engineering & Structural Dynamics, 31(3), Pages 491-514.
[23]         J. W. Baker and C. A. Cornell. (2006). Vector-valued ground motion intensity measures for probabilistic seismic demand analysis, Report No. 150, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
[24]         J. A. Anderson. (1995). An introduction to neural networks. MIT press.
[25]         M. B. Menhaj.(1998). Fundamentals of neural networks, Professor Hesabi publications, Tehran.
[26]         A. G. Ivakhnenko.(1968). The Group Method of Data of Handling; A rival of the method of stochastic approximation, Soviet Automatic Control, vol. 13, Pages 43-55.
[27]         M. miri, H. Beheshti nezhad, and M. Jafari. (2015). Experimental Investigation on Mechanical Properties of Concrete containing Nano Wollastonite and Modeling with GMDH-type Neural Networks, Amirkabir Journal of Civil Engineering, 46(2), Pages 143-156.(In Persian)
[28]         R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
[29]         Federal Emergency Management Agency. (2009). FEMA P-695: Quantification of Buildings Seismic Performance Factors, Federal Emergency Management Agency, Washington, DC.
[30]         A. Altoontash. (2004). Simulation and damage models for performance assessment of reinforced concrete beam-column joints, Stanford university, California.
[31]         T. B. Panagiotakos and M. N. Fardis. (2001). Deformations of reinforced concrete members at yielding and ultimate, ACI Structural Journal, 98(2), Pages 135-148.
[32]         Y.-K. Tung and B. C. Yen. (2005). Hydrosystems engineering uncertainty analysis. McGraw-Hill, New York.