بررسی آزمایشگاهی تاثیر بارگذاری دینامیکی بر پنل های مسلح مستطیلی ساخته شده با کامپوزیت سیمانی خود تراکم الیافی و ورق های مشبک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه عمران، دانشگاه لرستان، خرم آباد، ایران

2 دانشجوی کارشناسی ارشد، دانشگاه لرستان، خرم آّباد، ایران

چکیده

ماهیت بارگذاری های ضربه ای و دینامیکی به دلیل اعمال نیروی زیاد در چند میلی ثانیه با بارگذاری استاتیکی متفاوت می باشد. میزان جذب و استهلاک انرژی در مواد کامپوزیتی، معیاری مناسب به منظور بررسی عملکرد آنها در برابر بارهای ضربه ای می باشد. جاذب های انرژی به طور وسیعی در صنعت مورد استفاده قرار می گیرد. از طرفی استفاده از کامپوزیت های توانمند خود تراکم به دلیل ویژگی های منحصر به فرد آن، مورد توجه محققین قرار گرفته است. مقاومت فشاری و کششی بالا، مقاومت خمشی بالا موجب توجه بیش از پیش محققین به این نوع از کامپوزیت های سیمانی شده است. در این تحقیق بصورت یک کار جامع آزمایشگاهی با استفاده از 4 طرح اختلاط پایه، 64 پنل کامپوزیتی مستطیلی در دو گروه به ابعاد 100 در 100 میلیمتر با چهار ضخامت 30، 45، 60 و 75 میلیمتر ساخته و تحت بار ضربه ای دینامیکی تست شده اند. بر روی هر چهار طرح اختلاط ساخته شده، آزمایش های مقاومت فشاری، کششی و خمشی انجام گردید. از الیاف فولادی با درصد های 0، 25/0، 5/0 و 75/0 با طول 25 میلی‌متر به منظور ساخت کامپوزیت های سیمانی استفاده شد. دستگاه آزمایش ضربه از چکشی به وزن 180 کیلوگرم و توان 7500 ژول در این تحقیق استفاده شده است. نمونه ها با ارتفاع سقوط 600 میلیمتر، تحت بار گذاری دینامیکی قرار گرفته اند. مطابق با نتایج آزمایشگاهی مشاهده گردید که استفاده ترکیبی از الیاف و ورق های مشبک فولادی به صورت ترکیبی، موجب افزایش میزان جذب انرژی به طور قابل ملاحظه ای شد. همچنین نیروی پیک اولیه نیز افزایش یافت و همچنین طول لهیدگی و تغییر شکل نمونه کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study of the effect of dynamic loading on rectangular armed panels made of self-compacting composite fiber and lattice sheets

نویسندگان [English]

  • Ahmad Dalvand 1
  • Hossein Hatami 1
  • Arezo Seyedi Chegini 2
1 Assistant professor, faculty of engineering, lorestan university,khorramabad, iran
2 Lorestan University
چکیده [English]

The nature of dynamic loading is different due to the high force in a few milliseconds with static loading. The amount of energy absorption and energy loss in composite materials is a suitable measurement to evaluate the performance against impact loads. On the other hand, the use of self-compacting composites due to its unique properties has attracted the attention of researchers. High compressive and tensile strength, high flexural strength, has attracted more attention from researchers to this kind of cement composites. In this research, in the form of a comprehensive laboratory work, using four basement mixing designs, 64 rectangular composite panels were constructed in two groups of 100*100 mm with four thicknesses of 30, 45, 60 and 75 mm and tested under dynamic loading. Tensile and flexural strength tests were made on all four mixing designs. Steel fibers with percentages of 0, 0.25, 0.5 and 0.75 with length of 25 mm were used for the construction of cement composites. The drop hammer test machine with weighs 180 kg and the power of 7500 J is used. According to laboratory results, the combined use of steel and fiber reinforced steel sheets increased the energy absorption considerably. Also, the initial peak force increased and the deformation length decreased.

کلیدواژه‌ها [English]

  • Cement composite
  • Compressive strength
  • Micro steel fibers
  • Energy absorber
  • Force-displacement curve
[1] Eibl, J. Concrete. (1988). structures under impact and impulsive loading (CEB-Bulletin Information, No 187). Dubrovnik (Croatia), Comité Euro-International du Beton.
[2] Banthia, N. Sappakittipakom, M. (2007). Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research, 39, 1366-1372.
[3] Wild, S. Sabir, B., Khatib, J.M. (1995). Factors influencing strength development of concrete containing silica fume. Cement Concrete Res, 25, 1567–1584.
[4] Ozawa, K. Maekawa, K. Okamura, H. (1996). Self-Compacting high performance concrete. Collected Papers (University of Tokyo: Department of Civil Engineering), 34, 135-149.
[5] Okamura H. (1997). Self Compacting High-Performance Concrete. Concrete International, 31, 50-54.
[6] Okamura, H. Ozawa, K. (1994). Self-Compactable high performance concrete in japan. International Workshop on High Performance Concrete, 21, 31-44.
[7] Bartos, P.J.M. Gibbs, J.C. Zhu, W. (2001). Uniformity of in situ properties of Self-Compacting Concrete in full scale structural elements. Cement and Concrete Composites, 28, 489-501.
[8] Mastali, M. Dalvand, A. Sattarifard, A. (2017). The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycle CFRP fiber with different and dosages. Composite part B, 112, 74-92.
[9] Romualdi, J.P. Mandel, J.A. (1964). Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. Journal of ACI, 657–670.
[10] Vandewalle, L. RILEM, T.C. (2000). 162-TDF: Test and design methods for steel fibre reinforced concrete. Materials and structures, 33(225), 3-6.
[11] Li, V.C. (1993). From micromechanics to structural engineering- the design of cementitious composites for civil engineering applications. Journl of Struc Mechanics and Earthquake Engineering, 10(2), 37-48.
[12] Fischer, G. Wang, S. Li, V.C. (2003). Design of engineered cementitious composites for processing and workability requirements, Seventh International Symposium on Brittle Matrix Composites, Warsaw, Poland, 29- 36.
[13] Kong, H.J. Bike, S. Li, V.C. (2003). Development of a self-compacting engineered cementitious composite employing electrosteric dispersion/stabilization. Journal of Cement and Concrete Composites, 25(3), 301-309.
[14] Wang, S. Li, V.C. (2006). High early strength engineered cementitious composites. ACI Materials Journal, 103(2), 97-105 .
[15] Karihaloo, B.L. Wang, J. (1997). Micromechanical modeling and strain hardening and tensile softening in cementitious composites. Journal of Computational Mechanics, 19, 453-462.
[16] Lepech, M.D. Li, V.C. Robertson, R.E. Keoleian, G.A. (2007). Design of ductile engineered cementitious composites for improved sustainability. ACI Materials Journal, 105(4), 350-366.
[17]  Li, V.C. Yang, E.H. (2007). Self-healing in concrete materials, In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, S. van der Zwaag, ed., 161-193.
[18] Ghamarian, H.R. Zarei, M.T. Abadi, (2011). Experimental and Numerical Crashworthiness Investigation of Empty and Foam-filled End-capped Conical Tubes, Thin-walled Structures, 49(10), 1312–1319.
[19] Jones, N. (2010). Energy-absorbing effectiveness factor, International Journal of Impact Engineering, 37, 754–65.
[20] Meidell, A. (2009). Computer aided materials election for circular tubes designed to resist axial crushing. Thin-Walled Structures, 47(8), 962–9.
[21] Yuen, SC. Nurick, GN. (2008). energy absorbing characteristics of tubular structures with geometric and material modifications, Apply Mechanics Review, 61(2), 802-15.
[22] Olabi, A.G. Morris, Hashmi, E. M.S.J. (2007), Metallic tube type energy absorbers a synopsis. Thin-Walled Structures, 45(7), 706–26.
[23] Alghamdi, A. (20011), Collapsible impact energy absorbers. Thin-Walled Structures, 39, 189–213.
[24] Song, Jie. Chen, Yan. Lu, Gu. (2013). Light-Weight thin-walled structures whit patterned windows under axial crushing, International journal of Mechanical Sciences, 66, 239-248.
[25] Graciano, C. Martinez, G. Smith, D. (2009), Experimental investigation on the axial collapse of expanded metal tubes. Thin-Walled Structures, 47, 953-961.
[26] Garciano, C. Martinez, G. Gutirrez, A. (2012). Failure mechanism of expanded metal tubes under axial crushing. Thin-Walled Structures, 51, 20-24.
[27] Graciano, C. Martínez, G. Gutierrez, A. (2013). Energy absorption of axially crushed expanded metal tubes. Thin-Walled Structures, 71, 134-146.
[28] Smith, D. Graciano, C. Martínez, G. (20144). Quasi-static axial compression of concentric expanded metal tubes. Thin-Walled Structures, 84, 170– 176.
[29] Smith, D. Graciano, C. Martínez, G. Teixeira, P. (2014), Axial crushing of flattened expanded metal tubes. Thin-Walled Structures, 85, 42– 49.
[30] Hatami, H. Shokri Rad, M. Ghodsbin Jahromi, A. (2017). A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads. International Journal of Impact Engineering. 109, 224-239.
[31] Nouri, M.D. Hatami, H. Jahromi, A.G. (2015). Experimental and numerical investigation of expanded metal tube absorber under axial impact loading. Structural Engineering and Mechanics, 54 (6), 1245-1266.
[32] Hatami, H. Nouri, M.D. (2015). Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities. Latin American Journal of Solids and Structures, 12(10), 1950-1971.
[33] Hatami, H. Jahromi, A.G. (2017). Energy absorption performance on multilayer expanded metal tubes under axial impact, thin-Walled Structures, 116, 1–11.
[34] Sharbatdar, M.K. Parsa, H. (2017). The evaluation of strengthening effect reinforced concrete structures with FRP on seismic dynamic performance of the structures. Journal of Structural and construction engineering, online published, In Persian.
[35] Iranpour, A. Ebrahimpour, H. Rahgozar, R. (2017). Evaluation of bond-slip behavior in precast reinforced concrete beam-to-column connection using finite element modelling. Journal of Structural and construction engineering, online published, In Persian.
[36] Farokhzad, R. divandari, h. (2017). The effect of nano-caco3 and nano-SiO2 on properties of self-compacting concrete. Journal of Structural and construction engineering, online published, In Persian.
[37] Sanginabadi, Kh. Rostami, R. Habibi, N. Mostofinejad, D. Zarrebini, M. (2017). Fracture mechanics of fiber reinforced concrete: Experimental study of composition, geometry and hybridization of fibers. Journal of Structural and construction engineering, 5(2), 82-94, In Persian.
[38] Gholhaki, M. Kheyroddin, A. Hajforoosh, M. (2017). The Effect of Magnetic Water and Different Pozzolanic Materials on the Fresh and Hardened Properties of Self-Compacted Concrete. Journal of Structural and construction engineering, 5(1), 5-19, In Persian.