ارزیابی تاثیر میکروسیلیس بر خواص مکانیکی بتن های با سنگدانه های ریز بازیافتی بتنی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 دانشجوی دکتری، گروه عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

امروزه کاملا روشن گردیده که سرعت توسعه زیرساخت‌های عمرانی در کشورهای در حال توسعه منجر به وارد آمدن آسیب‌های فراوانی به محیط زیست شده است. بتن یکی از محصولاتی است که نقش زیادی در مصرف منابع تجدیدناپذیر دارد. امروزه نگاه مبتنی بر توسعه پایدار در صنعت ساخت در حال رشد و فزونی است و بتن به عنوان یکی از پرمصرف‌ترین محصولات ساختمانی در صدر این نگاه قرار گرفته است. تحقیق حاضر به بررسی تاثیر استفاده از پودر پوزولان‌ میکروسیلیس بر خواص مکانیکی بتن‌های بازیافتی ساخته شده از سنگدانه‌های ریز بازیافتی بتنی پرداخته است. بتن‌های بازیافتی، متشکل از سطوح مختلف جایگزینی ریزدانه‌های بازیافتی بتنی همراه با ریزدانه‌های طبیعی هستند. جهت بهبود کیفیت بتن‌های بازیافتی، پوزولان معرفی شده در سطوح مختلفی با سیمان جایگزین شد. جهت تعیین و مقایسه خواص مکانیکی بتن‌ها، 12 طرح اختلاط ساخته شده و آزمایش‌های مقاومت فشاری در سنین 7، 28 و 91 روزه، مقاومت کششی دونیم شدن و سرعت امواج فراصوت در سن 28 روزه انجام شدند. نتایج نشان دادند که به طور کلی در بازه 28 روزه، استفاده از میکروسیلیس می‌تواند باعث شود تا بتن‌های %25 بازیافتی به مقاومت مطلوب 40 مگاپاسکالی دست یابند. استفاده از سطح جایگزینی %10 میکروسیلیس، به ویژه در بتن‌های حاوی %25 مصالح بازیافتی، باعث گردید تا خواص مکانیکی بتن‌های بازیافتی به میزان چشم‌گیری به بتن‌های معمولی نزدیک گردند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of silica-fume effect on the mechanical properties of concrete with fine recycled aggregates

نویسندگان [English]

  • Seyed Fathollah Sajedi 1
  • Reza Afshar 2
1 Associate Professor, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Islamic Azad University of Ahvaz
چکیده [English]

Today, it is quite clear that the speed of development of infrastructure in developing countries has led to much damage to the environment. Concrete is one of the products that plays an important role in the use of non-renewable resources. Today, the vision of sustainable development in the manufacturing industry is growing and increasing, and concrete is at the forefront of this as one of the most widely used construction products. The present study investigates the effect of the use of silica-fume (SF) pozzolan powder on the mechanical properties of recycled concrete made from fine recycled aggregates. Recycled concretes consists of different levels of replacement of fine recycled concrete with natural fines. In order to improve the quality of recycled concrete, Pozzolan was introduced at various levels with cement. To determine and compare the mechanical properties of concrete, 12 mixing designs were made and compressive strength tests at 7, 28 and 91 days, tensile strength, and ultrasound velocity at 28 days of age were performed. The results showed that, generally speaking, in the 28-day period, the use of SF can cause 25% recycled concretes to achieve a desirable 40 MPa strength. The use of 10% SF replacement rate, especially in concrete containing 25% recycled aggregates, made the mechanical properties of recyclable concretes significantly closer to conventional concrete.

کلیدواژه‌ها [English]

  • Recycled concrete
  • Mechanical properties
  • Pozzolan
  • Silica-fume powder
  • Fine recycled aggregates
[1] Sonigo, H., Hestin, M., Mimid, S. (2010). Management of Construction and Demolition Waste in Europe. In: Stakholders Workshop, Brussels.
[2] BCSJ. (1977). Proposed Standard for the Use of Recycled Aggregate and Recycled Aggregate Concrete. Japan: Building Contractors Society of Japan Committee on Disposal and Reuse of Construction Waste.
[3] DIN 4226-100. (2000). Mineral aggregates for concrete and mortar-Part 100: Recycled aggregates. Germany.
[4] Brazilian Association of Technical Standards (ABNT). (2004). NBR 15116: Recycled aggregates of solid residue of building constructions – requirements and methodologies.
[5] BS, 8500-2, (2006). Concrete. Complementary British Standard to BS EN 206-1. Part II: Specification for constituent materials and concrete. British Standard Institution.
[6] Li, X. (2008). Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. Resources, Conservation and Recycling, 53 (1), 36-44.
[7] Rao, M. C., Bhattacharyya, S. K., Barai, S. V. (2011). Behaviour of recycled aggregate concrete under drop weight impact load. Construction and Building Materials, 25 (1), 69-80.
[8] Jalilifar, H., Sajedi, F., Kazemi, S. (2016). Investigation on the Mechanical Properties of Fibre Reinforced Recycled Concrete. Civil Engineering Journal, 2 (1), 13-22.
[9] Kou, S. C., Poon, C. S. (2013). Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cement and Concrete Composites, 37, 12-19.
[10] Jalilifar, H., Sajedi, F. (2017). Investigation on Mechanical Properties of Recycled Concrete Containing Natural Zeolite. International Journal of Engineering and Applied Sciences (IJEAS), 4 (3), 77-81.
[11] Limbachiya, M., Meddah, M. S., Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Construction and Building Materials, 27 (1), 439-449.
[12] Kwan, W. H., Ramli, M., Kam, K. J., Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26 (1), 565-573.
[13] De Juan, M. S., Gutiérrez, P. A. (2009). Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Construction and building materials, 23 (2), 872-877.
[14] ASTM C192 / C192M-16a, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2016.
[15] Tam, V., Gao, X., Tam, C. (2005). Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach, Cement and Concrete Research, 35, 1195-1203.
[16] ASTM C109/C109M-07. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken, PA, 2007.
[17] ASTM C496 / C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, 2004.
[18] ASTM C597-16, Standard Test Method for Pulse Velocity through Concrete, ASTM International, West Conshohocken, 2016.
[19] Whitehurst, E. (1951). Soniscope tests concrete structures, American Concrete Institution, 47, 443-444.
[20] Yang, K., Chung, H., Ashour, A. (2008). Influence of type and replacement level of recycled aggregates on concrete properties, ACI Materials Journal, 105 (3), 289-296.
[21] Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate, Cement and Concrete Research, 35 (4), 763-769.
[22] Pereira, P., Evangelista, L., de Brito, J. (2012). The effect of super-plasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates, Construction and Building Materials, 28 (1), 722-729.
[23] Evangelista, L., de Brito, J. (2012). Durability performance of concrete made with fine recycled concrete aggregates, Cement and Concrete Composites, 32 (1), 9-14.
[24] Evangelista, L., de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates, Cement and Concrete Composites, 29 (5), 397-401.
[25] Kou, S. C., Poon, C. S., Agrela, F. (2011). Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures, Cement and Concrete Composites, 33 (8), 788- 795.
[26] Ahmed, S. F. (2005). Properties of concrete containing recycled fine aggregate and fly ash. Concrete 2011 Conference, Perth, WA, Australia.
[27] Solyman, M. (2005). Classification of recycled sands and their applications as fine aggregates for concrete and bituminous mixtures, Dissertation, Verlag nicht ermittelbar.
[28] Silva, R.V., (2015). Ph.D. Thesis: Use of recycled aggregates from construction and demolition waste in the production of structural concrete, Lisbon: TECNICO LISBOA.
[29] Dhir, R. K., Paine, K. A., (2007). Performance related approach to the use of recycled aggregates, Waste and Resources Action Programme (WRAP) Aggregates Research Programme, Banbury, Oxon, UK, 77.
[30] Banthia, N., Chan, C., (2000). Use of recycled aggregate in plain and fibre-reinforced concrete, Concrete International 22(6):41-45.