بررسی اثر اندرکنش باد- سازه بر پاسخ طولی ساختمان‌های بلند

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استادیار، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

افزایش سریع جمعیت، محدودیت فضا، عوامل اقتصادی و اجتماعی از دلایلی هستند که باعث احداث ساختمان‌های بلند شده است. از طرفی، ابداع مصالح سبک و مقاوم باعث شده است که ساختمان‌های بلند دارای میرایی کم و پریود ارتعاشی زیاد باشند. بدین سبب، بررسی و آنالیز ساختمان‌های بلند تحت اثر نیروهای باد ضروری به نظر می‌رسد. در این پژوهش، با استفاده از روش دینامیک سیال محاسباتی (CFD) و دینامیک سازه محاسباتی(CSD) ، اثر اندرکنش باد و سازه بر روی ساختمان بلند استاندارد CARRC، با استفاده از نرم افزار اجزای محدود آباکوس انجام شده است. پروفیل سرعت میانگین باد در لایه مرزی اتمسفر با فرمول نمایی و آشفتگی جریان با استفاده از روش پیچک‌های بزرگ ضمنی (ILES) شبیه‌سازی شد و یک روش هم- شبیه‌سازی برای انتقال بارهای غیریکنواخت از قلمرو سیال به گره‌های سازه‌ای به‌کار برده شد. میرایی سازه‌ای نیز توسط روش رایلی تعیین شد و صحت‌سنجی مدل‌سازی‌ها با نتایج آزمایشگاهی و عددی معتبر انجام شدند. نتایج حاصل نشان می‌دهند که پاسخ سازه‌های فاقد میرایی در برابر باد، به طور قابل توجهی بیشتر از پاسخ سازه‌های دارای میرایی است. نتیجه‌گیری شد که مشخصات متوسط سرعت باد بر توزیع فشار میانگین باد روی ساختمان‌های بلند خیلی تأثیر گذار است، لذا به منظور اطمینان در طراحی ساختمان‌های بلند در برابر باد مسئله اندرکنش باد و سازه باید مد نظر قرار بگیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation into the effect of wind-structure interaction on the along-wind response of tall buildings

نویسندگان [English]

  • behnam shirkhanghah 1
  • Houshyar Eimani kalehsar 2
1 ph D. student, Department of civil engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 Assistant professor, Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Rapid growing of population, limitation of space, economic and social parameters are reasons that have led to the construction of tall buildings. On the other hand, due to invention of strong and lightweight materials, tall buildings had low damping ratio and long vibrational periods. For this reasons, it is necessary to investigate and analyze tall buildings under wind loads. In the present research, wind-structure interaction is performed on standard tall building CAARC using computational fluid dynamics (CFD), computational structural dynamics (CSD) and ABAQUS finite element software. The wind mean velocity profile is modelled using exponential formula in the boundary layer of atmosphere, wind turbulence is simulated using implicit large eddy simulation method (ILES), and co-simulation method is used to transfer non-uniform loads from fluid domain to structural nodes. Structural damping is determined by Rayleigh method. To validate the modelling, results are compared with reliable numerical and experimental findings. Results show that non-damped structures have responses significantly higher than damped structures. It is concluded that the distribution of the average wind pressure in high-rise buildings is influenced by the average wind speed. Therefore, in order to assurance in the design of tall structures, mechanical properties of wind and structure must be considered.

کلیدواژه‌ها [English]

  • CAARC building
  • Wind- structure interaction
  • ILES simulation
  • Co-simulation method
  • Aerodynamic analysis
  • Aeroelastic analysis
[1] Ng, E. Yuan, C. Chen, L. Ren, C. and Fung, J.C. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape and Urban Planning, 101(1), 59-74.
[2] Elshaer, A. Bitsuamlak, G. and El Damatty, A. (2017).  Enhancing wind performance of tall buildings using corner aerodynamic optimization. Engineering Structures, 136, 133-148.
[3] Huang, M. (2017). High-Rise Buildings under Multi-Hazard Environment, Singapore: Springer, 83-104.
[4] Lin, N. Letchford, C. Tamura, Y. Liang, B. and Nakamura, O. (2005). Characteristics of wind forces acting on tall buildings. Journal of Wind Engineering & Industrial Aerodynamics, 93(3), 217-242.
[5] Tutar, M. and Oguz, G. (2002). Large eddy simulation of wind flow around parallel buildings with varying configurations. Fluid Dynamics Research, 31(5), 289-315.
[6] Kim, Y.C. Yoshida, A. and Tamura, Y. (2012).  Characteristics of surface wind pressures on low-rise building located among large group of surrounding buildings. Engineering Structures, 35, 18-28.
[7] Tanaka, H. Tamura, Y. Ohtake, K. Nakai, M. and Kim, Y.C. (2012). Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. Journal of Wind Engineering & Industrial Aerodynamics, 107, 179-191.
[8] Eaton, K.J. and Mayne, J.R. (1975). The measurement of wind pressures on two-storey houses at Aylesbury. Journal of Wind Engineering & Industrial Aerodynamics, 1, 67-109.
[9] Murakami, S. Mochida, A. and Hibi, K. (1987). Three-dimensional numerical simulation of airflow around a cubic model by means of large eddy simulation. Journal of Wind Engineering & Industrial Aerodynamics, 25(3), 291-305
[10] Chen, Q. (2009). Ventilation performance prediction for buildings: a method overview and recent applications. Building and Environment, 44(4), 848-858.
[11] Sill, B.L. Cook, N.J. and Fang, C. (1992). The Aylesbury comparative experiment: a final report. Journal of Wind Engineering & Industrial Aerodynamics, 43(1), 1553-1564.
[12] Levitan, M.L. Mehta, K.C. Vann, W.P. and Holmes, J.D. (1991).  Field measurements of pressures on the Texas Tech building. Journal of Wind Engineering & Industrial Aerodynamics, 38(2-3), 227-234.
[13] Li, Q.S. Xiao, Y.Q. Wong, C.K. and Jeary, A.P. (2003). Field measurements of wind effects on the tallest building in Hong Kong. Structural Design of Tall and Special Buildings, 12(1), 67-82.
[14] Li, Q.S. Xiao, Y.Q. Wong, C.K. and Jeary, A.P. (2004). Field measurements of typhoon effects on a super tall building. Engineering Structures, 26(2), 233-244.
[15] Li, Q.S. Fu, J.Y. Xiao, Y.Q. Li, Z.N. Ni, Z.H. Xie, Z.N. and Gu, M. (2006). Wind tunnel and full scale study of wind effects on China's tallest building. Engineering Structures, 28(12), 1745-1758.
[16] Montazeri, H. and Blocken, B. (2013). CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Building and Environment, 60, 137-149.
[17] Wardlaw, R.L. and Moss, G.F. (1970). A standard tall building model for the comparison of simulated natural winds in wind tunnels, CAARC 25 (CC662m Tech).
[18] Stathopoulos, T. (1997). Computational wind engineering: past achievements and future challenges. Journal of Wind Engineering & Industrial Aerodynamics, 67, 509-532.
[19] Xiaoqing, D. and Jiang, B. Dai, C. Wang, G. and Chen, S. (2018).  Experimental study on wake-induced vibrations of two circular cylinders with two degrees of freedom. Wind and Structures Journal, 26(2), 57-68.
[20] Huang, P. Lin, H. Hu, F. and Gu, M. (2018). Experimental study and FE analysis of tile roofs under simulated strong wind impact. Wind and Structures Journal, 26(2). 75-87.
[21] Yuan, W.B. Yu, N.T. and Wang, Z. (2018). The effects of grooves on wind characteristics of tall cylinder buildings. Wind and Structures Journal, 26(2), 89-98.
[22] Bhattacharyya, B. and Dalui, S.K. (2018). Investigation of mean wind pressures on 'E' plan shaped tall building. Wind and Structures Journal, 26(2), 99-114
[24] Hirt, C.W. Ramshaw, J.D. and Stein, L.R. (1978). Numerical simulation of three-dimensional flow past bluff bodies. Computer Methods in Applied Mechanics and Engineering Journal, 14(1), 93-124.
[25] Hanson, T. Summers, D. and Wilson, C.B. (1986).  A three-dimensional simulation of wind flow around buildings. International Journal for Numerical Methods in Fluids, 6, 113-127.
[26] Summers, D.M. Hanson, T. and Wilson, C.B. (1986). Validation of a computer simulation of wind flow over a building model. Building Environment Journal, 21(2), 97-111.
[27] Meng, F.Q. He, B.J. Zhu, J. Zhao, D.X. Darko, A. and Zhao, Z.Q. (2018). Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. Journal of Building Engineering, 16, 146-158.
[28] Elshaer, A. Gairola, A. Adamek, K. and Bitsuamlak, G. (2017). Variations in wind load on tall buildings due to urban development. Sustainable Cities and Society, 34, 264-277.
[29] Mou, B. He, B.J. Zhao, D.X. and Chau, K.W. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293-309.
[30] Zhao, D.X. and He, B.J. (2017). Effects of architectural shapes on surface wind pressure distribution: case studies of oval-shaped tall buildings. Journal of Building Engineering, 12, 219-228.
[31] Alminhanaa, G.W. Brauna, A.L. Souzaa, A.M.L. (2018). A numerical study on the aerodynamic performance of building cross sections using corner modifications. Latin American Journal of Solis and Structures, 15(7), 1-18.
[32]. Yousef, M.A.A. Selvam, P.R. and Prakash, J. (2018).  A comparison of the forces on dome and prism for straight and tornadic wind using CFD model. Wind and Structures Journal, 26(6), 369-382.
[33] Rodrigues, A.M. Tomé, A. and Gomes, M.G. (2017). Computational study of the wind load on a free-form complex thin shell structure. Wind and Structures Journal, 25(2), 177-193.
[34] Abdi, S.D. and Bitsuamlak, G.T. (2016). Wind flow simulations in idealized and real built environments with models of various level of complexity. Wind and Structures Journal, 22(4), 503-524.
[35] Chakraborty, S. Dalui, S.K. and Ahuja, A.K. (2014). Wind load on irregular plan shaped tall building – a case study. Wind and Structures Journal, 19(1), 59-73.
[36] Lateb, M. Masson, C. Stathopoulos, T. and Bédard, C. (2013).  Comparison of various types of k–ε models for pollutant emissions around a two-building configuration. Journal of Wind Engineering and Industrial Aerodynamic, 115, 9-21.
[37] Smagorinsky, J. (1963). General circulation experiments with primitive equations I, the basic experiment. Monthly Weather Review, 91, 99-165.
[38] Lilly, D.K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4, 633-5.
[39] Huang, S. Li, Q.S. and Xu, S. (2007). Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research, 63(5), 612-627.
[40] Melbourne, W.H. (1980). Comparison of measurements on the CAARC standard tall building model in simulated model wind flows, Journal of Wind Engineering & Industrial Aerodynamics, 6(1-2), 73-88.
[41] Qian, T. (2013). Study of Wind Loads on High-rise Building with Different Length to Width Ratios. Hangzhou: Zhejiang University.
[42] Ryan, K.L. and Polanco, J. (2008). Problems with Rayleigh damping in base-isolated buildings. Journal of Structural Engineering, 134, 1780-1784.
[43] AIJ, (1996). AIJ Recommendations for Loads on Buildings. Tokyo: Architectural Institutes of Japan.
[44] Felippa, C.A. Park, K.C. and Farhat, C. (2001). Partitioned analysis of coupled mechanical systems. Computer Methods in Applied Mechanics and Engineering Journal, 190, 3247-3270.
[45] Zhang, Q. and Hisada, T. (2004). Studies of the strong coupling and weak coupling methods in FSI analysis. International Journal for Numerical Methods in Engineering, 60, 2013-2029.
[46] ABAQUS User’s Manual, V. 6.16.1.
[47] Obasaju, E.D. (1992). Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 40, 103-26.
[48] Luo, P. (2004). Wind Tunnel Test on Standard CAARC Tall Building Model. Shanghai: Tongji University.
[49] Braun, A.L. and Awruch, A.M. (2009). Aerodynamic and aero-elastic analyses on the CAARC standard tall building model using numerical simulation. Computers and Structures, 87, 564-581.