مطالعه ی رفتار سیستم قاب با ستون پیوند شده (LCF) طراحی شده مبتنی بر عملکرد، تحت زلزله‌های حوزه ی دور و نزدیک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشگاه سمنان

چکیده

در این مقاله، نوع جدیدی از سیستم باربر لرزه ای به نام سیستم قاب با ستون پیوند شده (LCF) به منظور مستهلک نمودن انرژی زلزله و بازگشت سریع سازه به خدمت رسانی، مورد مطالعه ی عددی قرار گرفته است. این سیستم با رفتار تیر پیوند شکل پذیر به عنوان فیوز برشی، در سطوح مختلف زلزله، سبب کاهش و یا عدم آسیب در دیگر اعضاء سازه می‌شود. جهت بررسی رفتار سازه‌ای این سیستم تحت زلزله‌های حوزه ی نزدیک و دور از گسل، پس از صحت سنجی مدل‌های آزمایشگاهی، سازه‌های 3، 6 و 9 طبقه بر اساس روش مبتنی بر عملکرد، طراحی شده و رفتار آن‌ها تحت نگاشت‌های اصلاح شده ی 7 زلزله ی نزدیک و 7 زلزله‌ی دور از گسل مورد بررسی قرار گرفته است. با توجه به نتایج حاصل از تحلیل دینامیکی غیرخطی، بیشینه درصد دریفت میان طبقه ای در حوزه ی نزدیک در سازه‌های فوق به ترتیب برابر 91/3 ، 08/1 و 65/1 درصد و نیز بیشنه درصد دریفت میان طبقه ای در حوزه ی دور به ترتیب برابر 74/1، 91/3 و06/4 درصد به دست آمده که در نیمه ی پایینی سازه‌های طراحی شده رخ داده و با توجه به مقایسه تغییرمکان ماکزیمم و درصد دریفت‌های میان طبقه ای به دست ‌آمده با سازه‌های طراحی شده به روش پیشنهادی شعیبی و همکاران و همچنین ملکوتیان و همکاران، سازه دارای تغییرمکان ماکزیمم و درصد دریفت میان طبقه ای کنترل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Study on the Performance-Based Seismic Design of Linked Column Frame (LCF) System Subjected to Near and Far-Field Earthquakes

نویسندگان [English]

  • majid Gholhaki 1
  • farnam foroozan 2
  • Omid Rezayfar 1
1 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 semnan university
چکیده [English]

This paper deals with numerical study of a newly developed seismic load resisting system called “linked column frame (LCF) system” which can be used to dissipate the earthquake energy and aids the structure to quickly revert to the serviceability level Dominant behavior of this system resembles that of the ductile link beam and as the shear fuse, it mitigate structural damages in various seismic events. In order to investigate the structural behavior of this in the event of near and far-filed earthquakes, after validationg the models by means of laboratory models, 3, 6 and 9-storey buildings were deigned making use of performance based design approach and then, the earthquake-induced responses were investigated by applying near and far-field earthquake records. Based on the results derived from the nonlinear dynamic analysis, the maximum inter - storey drift developed by the near and far-field earthquakes are equal to 3.91, 1.08, 1.65% and 1.74, 3.91 and 4.06, respectively. These values are related to the lower half of the building’s height and in compliance with the comparison between maximum displacement and inter-storey drifts obtained by the method proposed by Shoeibi and Malakoutian et al; the structure takes advantage of the controlled maximum and inter-storey drifts.

کلیدواژه‌ها [English]

  • Linked Column Frame (LCF) System
  • Performance Based Design (PBD)
  • Near Field Earthquake
  • Far Field Earthquake
  • Drift
[1] Dusicka P, Iwai R. Development of Linked Column Frame System for Seismic Lateral Loads. Struct. Eng. Res. Front., American Society of Civil Engineers; 2007, p. 1–13.
[2] Yun S, Hamburger R, Cornell C. Seismic performance evaluation for steel moment frames. J Struct 2002
[3] Lee K, Foutch D. Performance evaluation of new steel frame buildings for seismic loads. Earthq Eng Struct 2002.
[4] Asgarian B, Sadrinezhad A, Alanjari P. Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. J Constr Steel 2010.
[5] Richards P, Uang C. Development of Testing Protocol for Links in Eccentrically Braced Frame. 13th World Conf Earthq Eng 2004.
[6] Richards P, Uang C. Evaluation of rotation capacity and overstrength of links in eccentrically braced frames.  San Diego, CA Dep Struct Eng … 2002.
[7] Roeder CWC, Popov EEP. Inelastic behavior of eccentrically braced steel frames under cyclic loadings. NASA STI/Recon Tech Rep N 1977;78:20375.
[8] Fintel M, Ghosh SK. The Structural Fuse: An Inelastic Approach to Earthquake-Resistant Design of Buildings. Civ Eng 1981;51:48–51.
[9] Saeki E, Iwamatu K, Wada A. Analytical study by finite element method and comparison with experiment results concerning buckling-restrained unbonded braces. J Struct Constr Eng 1996;484:111–20.
[10] Iwata M, Kato T, Wada A. Buckling-restrained braces as hysteretic dampers. Proc. 3rd Int. Conf. Behav. Steel Struct. Seism. Areas (STESSA 2000), Montr. Canada, 2000, p. 33–8.
[11] Sabelli R, Mahin S, Chang C. Seismic demands on steel braced frame buildings with buckling-restrained braces. Eng Struct 2003;25:655–66.
[12] Nakashima M. Strain-hardening behavior of shear panels made of low-yield steel. I: test. J Struct Eng 1995;121:1742–9.
[13] Chen Z, Ge H, Kasai A, Usami T. Simplified seismic design approach for steel portal frame piers with hysteretic dampers. Earthq Eng Struct Dyn 2007;36:541–62. doi:10.1002/eqe.643.
[14] Lopes AP, Dusika P, DUSICKA P. Seismic Behavior and Design of the Linked Column Steel Frame System for Rapid Return to Occupancy. Portland, OR, OR: 2014.
 [15] Malakoutian M, Berman JW, Dusicka P. Seismic response evaluation of the linked column frame system. Earthq Eng Struct Dyn 2013;42:795–814.
[16] Malakoutian M, Berman JW, Dusicka P, Lopes A. Quantification of Linked Column Frame Seismic Performance Factors for Use in Seismic Design. J Earthq Eng 2016;20:535–58. doi:10.1080/13632469.2015.1104750.
[17] FEMA P695. Quantification of building seismic performance factors. Washington, D.C.: Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency; 2009.
[18] Aschheim M, Black E. Yield point spectra for seismic design and rehabilitation. Earthq Spectra 2000.
[19] Panagiotou M, Restrepo J. A modification of the equivalent lateral force performance based seismic design of high rise buildings. Hawaii: 2007.
[20] Priestley M, Calvi G, Kowalsky M. Direct displacement-based seismic design. 2005 NZSEE Conf 2007.
[21] Shibata A, Sozen M. Substitute-structure method for seismic design in R/C. J Struct Div 1976.
[22] Lee SS-S, Goel SSC, Chao SH. Performance-based seismic design of steel moment frames using target drift and yield mechanism. 13th World Conf Earthq 2004.
[23] Goel SC, Chao S, Leelataviwat S, Lee S. Performance-Based Plastic Desig ( PBPD) Method for Earthquake-Resistant Structures. 14 World Conf. Earthq. Eng., Beijing, China: 2008.
[24] Shoeibi SH, Gholhaki M, Kafi MA. New performance-based seismic design method for structures with structural fuse system. Engineering Structures 132 (2017).
[27] Lopes AP, Dusicka P, Berman J. Linked column frame steel system performance validation using hybrid simulation. Proc. Tenth US Natl. Conf. Earthq. Eng. Anchorage, Alaska, 2014.
[26] Alavi، B.; Krawinkler، H. (2001). “Consideration of Near Fault Ground Motion Effects in Seismic Design”;
[27] K. Galal, A. Ghobarah. (2006). "Effect of near-fault earthquakes on North American nuclear design spectra", Nuclear Engineering and Design, Elsevier
[28] Dusicka P, Lewis G. Investigation of replaceable sacrificial steel links. Proc. 9th US Natl. 10th Can. Conf. Earthq. Eng., vol. 1659, 2010
[29] AISC (American Institute of SteelConstruction). (2005). Seismic Provisions for Structural Steel Buildings, Chicago.
[30] Topic10;Design and Implementation Of Steel Structures (1397);office building design in persian