انتخاب مصالح نوین مناسب جهت اجرای دیوار غیرباربر در ساختمان‎ها به روش تحلیل سلسله مراتبی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده عمران، دانشگاه آزاد اسلامی واحد رودهن، ایران

2 دانشکده ی عمران، دانشگاه آزاد اسلامی واحد رودهن، ایران

چکیده

نظر به این که از عمده آسیب‏‎های مشاهده شده در زلزله‏‎های اخیر جدا شدن دیوارهای غیرباربر از اجزای سازه‏‎ای و ترک‏‎های بزرگ طولی و قطری در آنها می‏‎باشد، انتخاب دیوار مناسب برای ساختمان بسیار حائز اهمیت است. با توجه به تنوع دیوارها و تعدد معیارها، اتخاذ تصمیمی که تمام عوامل مؤثر را مدنظر قرار‏ دهد ضروری است. لذا در این مقاله از روش تحلیل سلسله مراتبی که یک روش سازگار با معیار‏ها و اهداف چندگانه در تصمیم‏‎گیری می‏‎باشد استفاده شده است. برای شناسایی و تعیین میزان اهمیت معیارهای تأثیر‏گذار در انتخاب دیوار و مقایسه دقیق دیوارها بر اساس معیارها، از مدلسازی عددی و مقایسه‏‎های تجربی استفاده گردیده است. دیوارها با معیارهای طراحی، اجرا، هزینه و زمان مورد مقایسه قرار گرفتند. دیوارهایی ‏که مورد ارزیابی قرار گرفته‏‎ا‏ند عبارت از: بلوک‏ سیمانی با دانه رس منبسط شونده (‌LECA)، پانل‏ ساندویچی (3D panel)، دیوار خشک (Drywall)، بلوک‌ بتنی هوادار اتوکلاو شده (AAC) می‏باشند. در نهایت با به کارگیری روش تحلیل سلسله مراتبی به اولویت‏‎بندی انواع دیوارهای مناسب برای ساختمان‏‎ها در مناطق زلزله‏‏‎خیز‏ پرداخته شده است. نتایج نشان داد دیوار خشک به جهت امتیازات مشخصه و مقایسه‏‎های تجربی به عنوان بهترین گزینه و بلوک بتنی هوادار اتوکلاو شده و بلوک‏‎های سیمانی سبک و پانل‏‎های ساندویچی به ترتیب در جایگاه‎‏های بعدی به عنوان گزینه‏‎های مناسب می‏‎توانند در ساختمان‏‎های در معرض زلزله عملکرد بهتری داشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Choosing the most appropriate modern materials for implementing non-loaded walls in building using the hierarchical analysis method

نویسندگان [English]

  • Maryam Lotfi 1
  • Mohammad Hadi Alizade Elizei 2
  • Hassan Ahmadi 2
1 Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
2 Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده [English]

The major damage observed in recent earthquakes is the separation of non-structural walls from structural components and large longitudinal and diagonal cracks in them; so, selecting the appropriate wall is very important. Considering the diversity of the existing walls and the multiplicity of the criteria, making an inclusive decision for choosing the most practical wall which considers all the relevant criteria seems necessary. Therefore, Analytical Hierarchy Process method was used for analysis in this paper. This method is compatible with multiple criteria and decision making purposes. In order to identify and determine the importance of effective criteria in choosing the appropriate wall, the Empirical comparisons have been used and for a more accurate comparison between the types of walls based on quantitative criteria, in addition to the questionnaire, numerical modeling has also been used. criteria include design criterion, performance criterion, economic criterion, and time criterion. Finally, using the hierarchical analysis method, the suitable types of walls in seismic areas have been prioritized. The materials used to evaluate the non-loaded walls are: 3D-panels, drywalls, cement blocks containing lightweight expanded clay aggregate (lECA), Autoclaved aerated concrete. The gained results of the study indicate that in order to achieve a safe and earthquake-resistant hospital structure, the drywalls is considered to be the best option and autoclaved aerated concrete as well as blocks options the light expanded clay aggregate and 3D-panel were selected respectively.

کلیدواژه‌ها [English]

  • Analytic Hierarchy Process
  • non-loaded walls
  • hospital
  • modern materials
  • drywall
  • non-Structural
[1] Dhakal, RP. (2010). Damage to Non-structural Components and Contents in 2010 Darfi eld Earthquake. Bulletin of the New Zealand Society of Earthquake Engineering, 43, (4), 404−411.
[2] Priestley, MJN., Sritharan, S., Conley, JR., Pampanin, S. (1999).  Preliminary results and conclusions from The  PRESSS five-story precast concrete test building. PCI Journal,  44 ( 6), 42–67. DOI:10.15554/pcij.11011999.42.67.
[3] Federal Emergency Management Agency., (2011).FEMA E-74Reducing the Risks of Nonstructural Earthquake Damage  A Practical Guide. Washington, D.C.
[4] Fulop, L.A. Dubina, D. (2004).Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading, part II: numerical modelling and performance analysis. Thin-Walled Structures, 42, 339–349.https://doi.org/10.1016/S0263-8231(03)00064-8.
[5] Kanvinde, A.M.Deierlein, G.G. (2006). Analytical models forthe seismic performance of gypsum drywall partitions. Earthquake Spectra, 22, 391–411. https://doi.org/10.1193/1.2191927
[6] Restrepo, J.I. Lang, A.F. (2011). Study of loading protocols in light-gauge stud partition walls. Earthquake Spectra, 27, 1169–1185. https://doi.org/10.1193/1.3651608
[7] Kanvinde, A.M.Deierlein, G.G. (2006). Analytical models for the seismic performance of gypsum drywall partitions. Earth Spectra 22, 391–411. https://doi.org/10.1193/1.2191927
[8] Häupl, P. Fechner, H.Petzold, H. (2004). Interior retrofit of masonry wall to reduce energy and eliminate moisture damage: comparison of modeling and field performance. In: Thermal performance of the exterior envelopes of whole buildings IX. Atlanta: GA: ASHRAE, 1-12.
[9] Bertolini, M. Braglia, M. (2006). Application of the AHP methodology in making a proposal for a public work contract. 17 January. https://doi.org/10.1016/j.ijproman.2006.01.005.
[10] Keeny, R.L.Raiffa, H. (1993). Decision making with multiple objectives: Preferences and value tradeoffs. Cambridge: Cambridge UniversityPress. https://doi.org/10.1017/CBO9781139174084.
[11] Che-Wei, C. Cheng-Ru, W. Chin-Tsai, L.Huang-Chu, C. (2007). An application of AHP and sensitivity analysis for  selecting the best slicing machine. Computer and Industrial Engineering, 52 (2), 296-307. https://doi.org/10.1016/ j.cie.2006.11.006.
[12] Kamal, M. Al-Subhi, A.H. (2001)Application of the AHP in project management.International Journal of project management, 19, 19-27. https://doi.org/10.1016/S0263-7863(99)00038-1
[13] Tiwari, M.K. Banerjee, R. (2001). A Decision Support System for the Selection of a Casting process using AHP. Production Planning and Control, 12, 689-694. https://doi.org/10.1080/09537280010016783 
[14] Tabarak, M.A. William, D. (2003). Artificial neural network for selection of buildable structural systems. Engineering Construction and Architectural Management Journal, 10(4), 263-271. https://doi.org/10.1108/09699980310489979
[15] Wong, J. Li, H. Lai, J. (2008). Evaluating the system intelligence of the intelligent building systems. Automation in Construction, 17, 284-302. https://doi.org/10.1016/j.autcon.2007.06.002.
[16] Dağdeviren, M. (2008). Decision Making in Equipment Selection: an integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 19, 397-406. https://doi.org/10.1007/s10845-008-0091-7.
 [17] Y. M.W, Y.L. b and Z. Hua. (2008). On the extent analysis method for fuzzy AHP and its applications. European Journal of Operational Research, 186 (2), 735-747. https://doi.org/10.1016/j.ejor.2007.01.050
[18]  Basak Sener, M  Lutfi Suzen and V. Doyura. (2006). Landfill site selection by using geographic information system. Environmental  Geology,  49 ( 3),  376-388.
[19] Al-Harbi, K.M.A.-S. (2001). Application of the AHP in project management. International Journal of Project Management, 19, 19- 27.
[20]  Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5.
[21] Amiri, M.P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. xpert Systems with Applications, 37 (9), 6218–6224. https://doi.org/10.1016/j.eswa.2010.02.103.
 [22] Duen-Ren Liua and Y.-Y. Shih. (2005). Integrating AHP and data mining for product recommendation based on customer lifetime value, Information & Management, 42 (3),  387-400.  https://doi.org/10.1016/j.im.2004.01.008.
[23] Semih Onut and S. Soner. (2011). Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Management, 28(9), 1552-1559.  https://doi.org/10.1016/j.wasman.2007.05.019.