ارزیابی لرزه ای فروریزش پیش رونده در ساختمان های کوتاه مرتبه 3 طبقه بتن مسلح ناشی از حذف ستون میانی

نوع مقاله : علمی - پژوهشی

نویسنده

گروه عمران، واحد اسلامشهر،دانشگاه آزاد اسلامی، اسلامشهر، ایران

چکیده

فروریزش پیش‌رونده خرابی تمام یا بخش عمده‌ای از یک سازه است که ناشی از گیسختگی موضعی در قسمت کوچکی از سازه شروع شده، در بخش‌های دیگر سازه ادامه یافته و بدین ترتیب فروریزش در المان‌های سازه، یکی پس از دیگری بیشتر و بیشتر می‌گردد. به گونه‌ای که سیستم سازه‌ای باقیمانده توانایی تحمل بارهای جانبی و ثقلی را نداشته باشد. لذا پیش‌بینی حاشیه امنیت در ساختمان‌ها در مقابل فروریزش پیش‌رونده ناشی از بار زلزله یکی از موضوعات مهم در مهندسی سازه می‌باشد. در این مقاله، مدلسازی چگونگی پیشرفت و گسترش آسیب در المان‌های سازه‌ای، یکی پس از دیگری، در ساختمان‌های قاب خمشی بتن مسلح کوتاه‌مرتبه تحت بار زلزله انجام یافته و تاثیر حذف ستون در نحوه گسترش و پیشرفت خرابی بررسی گردید. بدین منظور، با استفاده از نتایج تحلیل‌های تاریخچه زمانی غیرخطی، پتانسیل خرابی پیش‌رونده یک ساختمان کوتاه‌مرتبه بتن مسلح 3 طبقه با قاب خمشی معمولی، ناشی از حذف ستون تحت شتابنگاشت‌های دو مولفهای پیشنهاد شده دستورالعملFEMA_P695 مورد بررسی و مطالعه قرار گرفت. بر اساس نتایج تحقیق حاضر، توزیع شکست در خرابی پیش‌رونده متاثر از نوع شتابنگاشت نبوده و الگوی خاص و ویژه‌ای را دنبال می‌‌کند. شکست در مراحل اولیه توزیع، در تیرهای اطراف و فوقانی محل حذف ستون رخ داده، سپس به صورت عمودی در ارتفاع سازه از سقف همکف به سقفهای فوقانی منتقل شده و درنهایت به صورت افقی در طبقات توزیع یافته است. لذا پیشنهادات و راهکارهایی به منظور بهسازی لرزه‌ای ساختمان‌های کوتاه‌مرتبه بتن مسلح در برابر خرابی پیش‌رونده ارائه شده و همچنین به منظور پیش‌بینی توزیع و گسترش خرابی پیش‌رونده ناشی از بار زلزله، الگوهای رفتاری توزیع گسیختگی ارائه گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Progressive Collapse Evaluation in 3 Story Reinforced Concrete Buildings due to Inner Column Removal

نویسنده [English]

  • Somayyeh Karimiyan
Department of Civil Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
چکیده [English]

Progressive collapse in the structures is defined failure of the entire or major part of a structure that has initiated from the small part of the building, continued in the other structural elements and in this way, progressive collapse become larger and larger in the structural elements, one after another. Finally, the remaining structural system will not be able to resist the lateral and gravity loads. So, the prediction of safety margin in buildings against the progressive collapse due to the earthquake loads is one of the important issues in the earthquake and structural engineering. In this paper, modeling of the progress and distribution of the collapse in the elements of the structures, one after another, was carried out in moment resisting reinforced concrete short buildings due to the earthquake loads and effects of the column removal have been investigated on the progress and propagation of the collapse. For this purpose, the progressive collapse potential of a 3 story reinforced concrete building with ordinary moment resisting frame has been evaluated due to the column removal in presence of FEMA_P695 two component ground motions. According to the results of the nonlinear time history analyses, collapse distribution is not affected by the earthquake records in the progressive collapse and follows a special pattern. In the early stages of distribution, collapse occurred in the beams surrounding and upper parts of the column removal area, then transferred at the height of the structure from the first ceiling to the upper ceiling, vertically and eventually, distributed horizontally in the stories. Therefore, recommendations and suggestions have been presented for seismic optimization of the reinforced concrete short buildings against the progressive collapse. Also, distribution patterns of the collapse have been presented to predict the collapse propagation due to the column removal in presence of the earthquake loads.

کلیدواژه‌ها [English]

  • Progressive Collapse
  • Collapse Distribution
  • Reinforced Concrete Short Building
  • Column Removal
  • Nonlinear Time History Analyses
[1] Griffith, H. Pugsley, A. and Saunders, O. (1968). Report of the inquiry into collapse of flats of Ronan point, Canning Town, London, England.
[2] Ferahian, Ramzi. H. (1972). Buildings design for progressive collapse. Civil Engineering. American Society of Civil Engineer. New York. 66-69.
[3]­Scott, David. Lane, Barbara. and Gibbons, Craig. (2002). Fire Induced Progressive Collapse. Buildingsmartalliance.org.
[4] Unified Facilities Criteria (UFC). (2008). Structures to Resist the Effects of Accidental Explosions.
[5] Lu, Xinzheng. Lin, Xuchuan. Ma, Yuhu. Li, Yi. and Ye, Lieping. (2008). Numerical Simulation for the Progressive Collapse of Concrete Building due to Earthquake, Proceedings. In: the 14th World Conference on Earthquake Engineering. Beijing, China.
[6] Lu, X.Z. Li, Y. Ye, L.P. Ma, Y.F. and Liang, Y. (2008). Study on the Design Methods to Resist Progressive Collapse for Building Structures, Proceedings. In:Tenth Int. Symp. On Structural Engineering for Young Experts.
[7] Ettouney, Mohammed. Smilowitz, Robert. Tang, Margaret. And Hapij, Adam. (2012). Global System Considerations for Progressive Collapse with Extensions to Other Natural and Man-Made Hazards. J. Perform. Constr. Facil., SPECIAL ISSUE: Mitigating the Potential for Progressive Disproportionate Structural Collapse, 20, 403–417.
[8] Gurley, C. (2012). Progressive Collapse and Earthquake Resistance.Pract. Period. Struct. Des. Constr. ASCE. 13(1), 19–23.
 [9] Yi, LI. Xin-zheng, LU. and Lie-ping, YE. (2011). Study on the Progressive Collapse Mechanism of RC Frame Structures. Building Science, 27(5), 12-18.
[10] Hou, Jian. and Song, Li. (2016). Progressive Collapse Resistance of RC Frame under a Side Column Removal Scenario: The Mechnism Explained. J of concrete structuers and materials. 10(2), 237-247.
[11] Kaiqi, Lin. Xinzheng, Lu. Hong, Guan. (2016). Effects of Seismic and Progressive Collapse Designs on the Vulnerability of RC Frame Structures. J of Performance of Consteructed Facilities.  31(1).
[12] Usefi, N. Nav, F. M. and Abbasnia, R. (2016). Finite element analysis of RC elements in progressive collapse scenario. Gradevinar, 68(12), 1009-1022. doi:10.14256/JCE.1550.2016.
[13] Yasser, E. Ibrahim. Mostafa, A. Ismail. and Marwa, Nabil. (2017). Response of Reinforced Concrete Frame Structures Under Blast Loaing. Procedia Engineering. 171, 1550.
[14] Talaat, M. and Mosalam, K-M. (2009). Modeling progressive collapse in reinforced concrete buildings using direct element removal. Earthquake Engng. Struct. Dyn. 38. 609–634.
[15] Khandelwala, Kapil. El-Tawila, Sherif. and Sadekb, Fahim. (2009). Progressive collapse analysis of seismically designed steel braced frames. Constructional Steel Research, 65(3), 699-708.
[16] Bažant, Zdenfk and P.Verdure, Mathieu. (2007). Mechanics of Progressive Collapse. Learning from World Trade Center and Building Demolitions. Engineering Mechanics, 3, 133.
[17] El-Tawil, Sherif. Khandelwal, Kapil. Kunnath, Sashi. and Lew, H.S. (2007). Macro models for progressive collapse analysis of steel moment frame buildings. Proceedings. In: Structures Congress 2007. Long Beach, California, United States.
[18] Ibarra, L-F. Medina, R-A. and Krawinkler, H. (2005). Hysteretic Models that Incorporate Strength and Stiffness Deterioration. J. Earthquake Eng. and Struct. Dyn. 34: 1489–1511.
[19] Havaei, GholamReza. and Bayat, Elyas. (2018). The structural response and manner of progressive collapse in RC buildings under the blast and Provide approaches to retrofitting columns against blast. Journal of Structural and Construction Engineering (JSCE)DOI): 10.22065/JSCE.2017.77550.1076.
[20] Karimiyan, Somayyeh. Sarvghad Moghadam, Abdolreza. and Vetr, Mohammad Ghsem. (2013). Seismic Progressive Collapse Assessment of 3-Story RC Moment Resisting Buildings with Different Levels of Eccentricity in Plan, Earthquakes and Structures, 5(3), 277-296.
[21] Karimiyan, Somayyeh. Sarvghad Moghadam, Abdolreza. Karimiyan, Morteza. and Husseinzadeh Kashan, Ali. (2013). Seismic Collapse Propagation in 6-Story RC Regular and Irregular Buildings, Earthquakes and Structures, 5(6), 753-779.
[22] Karimiyan, Somayyeh. Sarvghad Moghadam, Abdolreza. Husseinzadeh Kashan, Ali. and Karimiyan, Morteza. (2014). Progressive Collapse Evaluation of RC Symmetric and Asymmetric Mid rise and Tall Buildings under Earthquake Loads, International Journal of Civil Engineering, 13(1A), 30-44.
[23] Karimiyan, Somayyeh. Husseinzadeh Kashan, Ali. and Karimiyan, Morteza. (2014). Progressive Collapse Vulnerability in 6-Story RC Symmetric and Asymmetric Buildings under Earthquake Loads, Earthquakes and Structures, 6(5), 473-494.
[24] Karimiyan, Somayyeh. Sarvghad Moghadam, Abdolreza. Husseinzadeh Kashan, Ali. and Karimiyan, Morteza. (2014). Evaluation of Collapse Distribution in 3-Story RC Moment Resisting Asymmetric Buildings due to Earthquake Loads, International Journal of Civil Engineering, 15 (5), 809–825.
[25] Karimiyan, Somayyeh.  Sarvghad Moghadam, Abdolreza. and Vetr, Mohammad Ghasem. (2013). Comparison of progressive collapse in 3 story reinforced concrete asymmetric buildings under earthquake loads, Sharif Journal of Technology, 31(202), 87-97.
[26] Karimiyan, Somayyeh. and Sarvghad Moghadam, Abdolreza. (2013). Modeling of Seismic Progressive Collapse Distribution in 3 Story Symmetric and Asymmetric Reinforced Concrete Buildings, Modeling in Engineering, 37(5), 51-75.
[27] Sarvghad Moghadam, Abdolreza. and Karimiyan, Somayyeh. (2014). Seismic progressive collapse of multistorey asymmetric buildings, 7th European Workshop on the Seismic Behaviour of Irregular and Complex Structures (7th EWICS), 17-18 October, Faculty of Civil Engineering, Opole University of Technology, Poland.
[28] Sarvghad Moghadam, Abdolreza. and Karimiyan, Somayyeh. (2014). Modelling and Computational issues in Seismic Progressive Collapse Assessment of RC Moment Resisting Buildings with Eccentricity in Plan, 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain.
[29] Sarvghad Moghadam, Abdolreza. and Karimiyan, Somayyeh. (2014). Seismic progressive collapse Assessment of RC Moment Resisting Buildings with Eccentricity in Plan. Second European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey.
[30] Balasaraswathi, K. and M. Ramakrishna, G. (2017). Progressive Collapse Analysis of Asymmetric Reinforced Concrete Building.  International Journal for Trends in Engineering and Technology, 23(1), ISSN: 2349 – 9303.
[31] Yenidogan, C. Yokoyama, R. Nagae, T. Tahara, K. Tosauchi, Y. Kajiwara, K. and Ghannoum, W. (2018). Shake table test of a full-scale four-story reinforced concrete structure and numerical representation of overall response with modified IMK model. Bulletin of Earthquake Engineerin,16 (5), 2087–2118.
[32] Thombare, Rucha. and Magarpatil, H. R. (2017). Non-Linear Static Progressive Collapse Analysis of High Rise R.C.C. Structure. International Research Journal of Engineering and Technology (IRJET). 4(6), 1620-1630.
[33] Soleymani, Atefeh. and Esfahani, mohammad Reza. (2018). Effect of concrete strength and thickness of flat slab on preventing of progressive collapse caused by elimination of an internal column. Journal of Structural and Construction Engineering (JSCE). DOI): 10.22065/JSCE.2017.98444.1335
[34] FEMA P695, (2009). Quantification of Building Seismic Performance Factors, Prepared by APPLIED TECHNOLOGY COUNCIL, www.ATCouncil.org.
[35] Ibarra, Luis F. Medina, R. A. and Krawinkler, H. (2005). Hysteretic Models that Incorporate Strength and Stiffness Deterioration, J. Earthquake Eng. and Struct. Dyn., 34, 1489–1511.
[36] Haselton, C.B. and Deierlein, G.G. (2007). Assessment Seismic Collapse Safety of Modern Reinforced Concrete Moment Frame Building. Ph.D. thesis, The John A. Blume Earthquake Engineering Center, Stanford University.
[37] Ibarra, Luis F. and Krawinkler, H. (2004). Global Collapse of Deteriorating MDOF Systems, Proc.13thWorld Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, Paper No. 116.
[38] Ibarra, Luis F. (2005). Global Collapse of Frame Structures under Seismic Excitations. Ph.D. thesis, Stanford Univ.
[39] Lignos, D. G. (2008). Sidesway Collapse of Deteriorating Structural Systems under Seismic Excitations. Ph.D. thesis, Stanford Univ.
[40] Lignos, D. G. Zareian, F. and Krawinkler, H. (2008). Reliability of a 4-Story Steel Moment-Resisting Frame Against Collapse Due to Seismic Excitations, Structures Congress 2008. Vancouver: ASCE.
[41] Krawinkler, H. Zareian, F. Lignos, D. G. and Ibarra, L. F. (2009). Prediction of Collapse of Structures under Earthquake Excitations, COMPDYN 2009, ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Island of Rhodes: National Technical University of Athens.
[42] Haselton, C.B. Liel, A. B. and Deierlein, G. G. (2009). Simulating Structural Collapse due to Earthquakes: Model Idealization, Model Calibration, and Numerical Solution Algorithms, COMPDYN2009, ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Island of Rhodes: National Technical University of Athens.
[43] Haselton, C.B. Liel, A. B. Lange, S. T. and Deierlein, G. G. (2008). Beam-Column Element Model Calibrated for Predicting Flexural Response Leading to Global Collapse of RC Frame Buildings. PEER Report 2007/03, Pacific Earthquake Engineering Research Center, College of Engineering University of California, Berkeley.
[44] Zareian, Farzin. Lignos, Dimitrios G. and Krawinkler, Helmut. (2009). Quantification of Modeling Uncertainties for Collapse Assessment of Structural Systems under Seismic Excitations. COMPDYN 2009, ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Island of Rhodes: National Technical University of Athens.
[45] Zareian, F. and Medina, R. A. (2010). A Practical Method for Proper Modeling of Structural Damping in Inelastic Plane Structural Systems. J. Computers and Structures, 88, 45–53.
 [46] Ashrafi, Hamid Reza. and Hassanzadeh, Seyed Ali. (2018). Introducing an optimal method for macro modeling of nonlinear dynamic analysis in progressive collapse. Journal of Structural and Construction Engineering (JSCE). DOI): 10.22065/JSCE.2018.113761.1425.