دو شیوه‎ی یافتن برش پایه‎ برای طرح خمیری قاب ها

نوع مقاله : علمی - پژوهشی

نویسندگان

1 مشهد- دانشگاه فردوسی مشهد- دانشکده ی مهندسی گروه عمران

2 کارشناسی ارشد، دانشگاه فردوسی، مشهد، ایران

چکیده

روش طرح خمیری (پلاستیک) برپایه‎ی عملکرد، با هدف دستیابی به پاسخ بهتر برای ساختمان‎ها در زیر اثر زمین‎لرزه‎های شدید، گسترش فراوانی پیدا کرده است. برای انجام این کار، فن های گوناگونی تاکنون پیشنهاد نموده اند. در این پژوهش، شیوه‎‎ی دستیابی به برش پایه در راه‎کار طرح خمیری برپایه‎ی عملکرد بررسی می‎گردد. برای رسیدن به این هدف، دو فرآیند محاسبه‎ی برش پایه به کار می‎رود و از پاسخ‎های این دوفن درطرح سازه ها بهره جویی می‎شود. برش پایه‎ی دو قاب‎ خمشی سه طبقه و شش طبقه به دو گونه‎ی طیف نقطه‎ی تسلیم و کارمایه( انرژی) حساب خواهد شد. سپس، از اختلاف بین کارمایه ی‎ وارد به سازه و کارمایه ی کرنشی کشسان آن، مقدار جذبی به دست می‎آید. با بهره جستن از این کارمایه ی خمیری، طرح عضوهایی انجام می‎پذیرد، که نامزد تسلیم هستند و در ادامه ، با به کار بردن نیروهای ناشی از خمیری شدن عضوهای شکل‎پذیر و شرط ایستایی درخت ستون، ظرفیت ستون‎ها در دسترس قرار می‎گیرد. سرانجام، از تحلیل‎های ناخطی ایستا و پویا (دینامیکی) بهره جویی خواهد شد و عملکرد این قاب‎ها ارزیابی می‎شود. این پژوهش، به مقایسه ی این دو راه کار می‌پردازد و نتیجه ها نشان می دهند که در ساختمان‎های متوسط و بلند، بهره جستن از معادله‎ی کارمایه برای حساب کردن برش پایه‎، طرح را مناسبتر می‌سازد. هرچند، نمودار پخش تغییرمکان نسبی در ارتفاع برای قاب های طرح شده به شیوه‌‌‌ی طیف نقطه‌ی تسلیم، قابل پیش بینی تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Two techniques for calculating design base shear

نویسندگان [English]

  • Mohammad Rezaiee-Pajand 1
  • Elham Mirafzali 2
1 Civil Eng., Ferdowsi University of Mashhad, Iran
2 Department of civil engineering, Ferdowsi university of Mashhad, Mashhad, Iran
چکیده [English]

Performance-Based Plastic Design (PBPD) method has been recently developed to achieve the enhanced response of structures to earthquake. To reach this goal, several ways have been suggested. In this paper, the schemes of calculating base shear in the (PBPD) procedure will be studied. Two techniques of determining base shear will be used. The base shear of two steel moment frames will be found by these two processes. By using the difference between the input energy and the elastic strain energy to obtain the plastic energy, the plastic design is then performed to detail the frame members in order to achieve the intended yield mechanism and behavior. The inelastic seismic behaviors of the four frames were studied through nonlinear static and dynamic analyses. These two suggested techniques and their comparisons have not been proposed yet. This kind of plastic design has three main parts. Calculating base shear is the first and important portion. The second part consists of the member plastic design for flexible behavior. To design elastic members by using column trees is the third and last part. Throughout this study is devoted to present two methods for calculating base shear. The moment frames will be investigated in this article.

کلیدواژه‌ها [English]

  • Base Shear
  • Performance-Based Plastic Design
  • Yield Point Spectra
  • Energy
  • Target Displacement
  • Yield Mechanism
[1] Lee, S.-S. and Goel, S.C. (2001). Performance-Based Design of Steel Moment Frames Using Target Drift and Yield Mechanism. Report No. UMCEE 01-17, Dept. of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI.
[2]  Goel, S. C., Lioa, W.C.,Chao S. H. and Bayat, M.R. (2010). Performance-Based Plastic Design (pbpd) Method for Earthquake Resistant Structures: An overview. The structural design of tall and special buildings. Wiley Interscience , Vol. (19),  pp (115137).
[3] Chao, S.-H. and Goel, S. C. (2006b). A Seismic Design Method for Steel Concentric Braced Frames (CBF) for Enhanced Performance. Paper No. 227. 4th International Conference on Earthquake Engineering. Taipei, Taiwan.
[4] Chao, S.-H. and Goel, S. C. (2005). Performance-Based Seismic Design of EBF Using Target Drift and Yield Mechanism as Performance Criteria. Report No. UMCEE 05-05, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI.
[5] Chao, S.-H. and Goel, S. C. (2006a). Performance-Based Design of Eccentrically Braced Frames Using Target Drift and Yield Mechanism. AISC Engineering Journal, 3rd Quarter, (173-200).
[6] Goel, S.C. and Chao, S.-H. Performance-Based Plastic Design: Earthquake Resistant Steel Structures. (2008).  International Code Council.
[7] Chao, S.-H. and Goel, S. C. (2008). Performance-Based Plastic Design of Special Truss Moment Frames.  AISC Engineering Journal, Second Quarter.
 [8] Chao, S.-H. and Goel, S.C. (2006b). Performance-Based Plastic Design of Seismic Resistant Special Truss Moment Frames (STMF). Report No. UMCEE 06-03, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI.
 [9] Liao, W.C. and Goel S. C. (2010). Performance Based Plastic Design (PBPD) of Reinforced Concrete Special Moment Frame Structures. The 3rd Congress of the International Federation for Structural Concrete (fib), Washington DC.
[10] Sahoo DR and Chao SH. (2010). Performance-Based Plastic Design for Buckling-Restrained Braced Frames. In: Proceedings of 9th US national and 10th Canadian conference on earthquake engineering.
[11]  Goel, S.C., Liao, W.-C., Bayat, M. R., and Leelataviwat, S. (2009). Performance-Based Plastic Design (PBPD) Method for earthquake Resistant Structures: An Overview. In: Proceedings of Structural Engineers Association of California Convention SEAOC 2009, San Diego, California.
[12] Leelataviwat, S., Saewon, W. and Goel, S.C. (2007). An Energy Based Method for Seismic Evaluation of Structures. In: Proceedings of Structural Engineers Association of California Convention SEAOC, Lake Tahoe, California, 2131.
[13] Bayat, M. R., Goel, S. C. and Chao, S.-H. (2008). Further Refinement of  Performance-Based Plastic Design (PBPD) of Structures for Earthquake Resistance. 14th World Conference on Earthquake Engineering, Paper No. 05-01-0412, Beijing China.
[14] Rezai Pajand, M. and Mirafzali, E. (1393). The Effects of Viscous Damping on the Plastic Design of Bending Frames. Fluid and Structure Mechanics of Shahrood, (4-2), (35-51).
 [15] Goel, S. C. and Leelataviwat, S. (1998). Seismic Design by Plastic Method. Engineering Structures, Elsevier Science, (4-6),  (465-471).
[16] NEHRP Recommended Seismic Provisions for New Buildings and Other Structures., (2009). PART 3, RESOURCE PAPERS (RP) ON SPECIAL TOPICS IN SEISMIC DESIGN.
[17] Lee, Soon-Sik and Goel, S.C. (2000). A New Lateral Force Distribution for Seismic Design of Steel Structure. In: Proceedings of U.S.-Japan Workshop on Seismic Fracture Issues in Steel Structures, San Francisco, CA.
[18]  Chao, S.-H., Goel, S.C. and Lee, S.-S. (2007). A Seismic Design Lateral Force Distribution Based on Inelastic State of Structures. Earthquake Spectra, Earthquake Engineering Research Institute, 23:3, 547-569.
[19]  Iran National Standard no.2800. (1384). Third edition.
[20]  Iranian National Building Code, part 6: The Forces on the Building. (1385).
[21]  Iranian National Building Code, part 10: Design and Construction of Steel Buildings. (1387).
 [22]  CSI. (2007). Perform-3D V.4.0 User Manual. Computers & Structures, Inc., Berkeley, USA.
[23] FEMA, “Quantification of Building Seismic Performance Factors (ATC-63 Project),” FEMA P695., (2009). Federal Emergency Management Agency, Washington D.C.
[24]  Seismic Evaluation and Retrofit of Existing Buildings. (1385). no.360.