مقایسه تاثیر نانو کربنات کلسیم و نانو سیلیس بر خواص بتن خودتراکم

نوع مقاله : یادداشت فنی

نویسندگان

گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده

با گسترش روز افزون استفاده از بتن، تکنولوژی های نوین در عرصه ساخت این ماده ساختمانی وارد شده است. بتن خود تراکم(SCC) یکی از انواع بتن هایی است که امروزه بشدت در صنعت ساختمان مورد استفاده قرار می گیرد. توانمند سازی بتن خود تراکم از حیث خواص مکانیکی و دوامی و در نتیجه افزایش عمر مفید بتن و کارایی سازه های بتنی، با استفاده از مواد مکمل مانند پوزولان ها و نانومواد امکان پذیر است. نانومواد از قبیل نانوسیلیس، نانوکربنات کلسیم و مواد مشابه با توجه به ساختار آن می توانند در ساخت بتن خود تراکم، مفید و ارزشمند باشند. هدف اصلی در این مقاله، بررسی اثر نانوکربنات کلسیم و نانو سیلیس بر مشخصات مکانیکی و دوامی بتن های خود تراکم می باشد. به این منظور بتن های مختلف با طرح اختلاط های حاوی صفر، یک، دو و سه درصد نانو کربنات کلسیم و نانو سیلیس ساخته شد. نمونه های مورد استفاده به صورت مکعبی 15*15*15 و استوانه ای بسته به نوع آزمایش ساخته و در سن های 7 و 28 روزه مورد آزمایش قرار گرفتند. در تمام طرح اختلاط ها آزمایش های مربوط به رئولوژی بتن تازه شامل روانی بتن، جریان اسلامپ ، قیف V، جعبه L شکل، آزمایش J رینگ و جعبه U انجام شده است. سپس آزمایش های مرتبط با مقاومت مکانیکی شامل مقاومت فشاری، و مقاومت کششی انجام گردید. در پایان جهت بررسی دوام از آزمایش های نفوذپذیری ، سیکل ذوب و یخبندان، مقاومت الکتریک و تعیین سرعت پالس در بتن استفاده گردید. در پایان خواص ریزساختاری بتن حاوی نانوکربنات تحت آزمایش های XRD و SEM قرار گرفت. در تمامی نمونه ها، استفاده از نانو کربنات کلسیم موجب افزایش خواص مقاومتی و دوامی بتن خودتراکم می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of nano-caco3 and nano-SiO2 on properties of self-compacting concrete

نویسندگان [English]

  • Reza Farokhzad
  • hossein divandari
Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

With the growing progress in the use of concrete, novel technologies have been introduced into the production of this building material. Self-consolidating concrete (SCC) is one of the concrete types, which has been extensively applied in building industry nowadays. SCC could be empowered in terms of durability and mechanical properties and, as a result, the service-life of SCC and efficiency of concrete structures could be increased using complementary materials such as Pozzolans and nano-materials. Considering their structures, nano-materials such as nano-silica, nano-calcium carbonate and other similar materials could be helpful in making SCC. This paper aims to investigate the effect of nano-calcium carbonate and nano-silica on the durability and mechanical characteristics of SCC. Thus, different concrete forms with the mixture designs containing 0%, 1%, 2% and 3% nano-calcium carbonate and nano-silica were developed. The samples were made in 15*15*15 cubic and cylindrical forms, depending on the experiment type, and tested at the ages of 7 and 28 days. In all the mixture designs, the rheological tests relating to fresh concrete including concrete flow, slump test, V-funnel, L-box, J-ring and U-box tests were performed. Finally, in order to examine the durability, permeability, freeze and thaw cycle, electrical resistance and pulse rate determination in concrete were employed. At the end, micro-structural properties of concrete containing nano-carbonate were tested using XRD and SEM tests. In all the samples, use of nano-calcium carbonate increased durability and resistance properties of SCC.

کلیدواژه‌ها [English]

  • nano-caco3
  • nano-SiO2
  • self-compacting concrete(SCC)
  • Durability
  • mechanical properties
  1. [1].         Teir S, Eloneva S, Zevenhoven R. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion and Management. 2005;46(18-19):2954-79.

    [2.]         Neville AM. Properties of concrete: Longman London; 1995.

    [3].         Okamura H, Ouchi M. Self-compacting concrete. Journal of advanced concrete technology. 2003;1(1):5-15.

    [4].         Ouchi M, Okamura H. Self-compacting high performance concrete. Concrete international. 1997:50-4.

    1. Okamura H, Ozawa K, Ouchi M. Self-compacting concrete. STRUCTURAL CONCRETE-LONDON-THOMAS TELFORD LIMITED-. 2000(1):3-18.

    [6].         EFNARC S. Guidelines for self-compacting concrete. EFNARC,UK (www efnarc org). 2005.

    [7].         Farokhzad R, Mahdikhani M, Bagheri A, Baghdadi J. Representing a logical grading zone for self-consolidating concrete. Construction and Building Materials. 2016;115:735-45.

    [8.]         Niaraki Rl, Farokhzad R. Prediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA). Journal of Structural Engineering and Geo-Techniques. 2017;7(2).

    [9.]         Khotbehsara MM, Miyandehi BM, Naseri F, Ozbakkaloglu T, Jafari F, Mohseni E. Effect of SnO 2, ZrO 2, and CaCO 3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions. Construction and Building Materials. 2018;158:823-34.

    [10.]       Liu X, Chen L, Liu A, Wang X. Effect of nano-CaCO3 on properties of cement paste. Energy Procedia. 2012;16:991-6.

    [11.]       Camiletti J, Soliman AM, Nehdi ML. Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. Magazine of Concrete Research. 2013;65(5):297-307.

    [12.]       Li W, Huang Z, Cao F, Sun Z, Shah SP. Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Construction and Building Materials. 2015;95:366-74.

    [13.]       Meng T, Yu Y, Wang Z. Effect of nano-CaCO3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Composites Part B: Engineering. 2017;117:124-9.

    [14.]       Sadeghi M, Esfandiari A. The effects of micro and nano CaCO3 on the rheological and physico/mechanical behavior of an SBS/CaCO3 composite. Materials and technology. 2012;46(6):695-703.

    [15.]       Wu Z, Shi C, Khayat KH, Wan S. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites. 2016;70:24-34.

    [16.]       Roychand R, De Silva S, Setunge S, Law D. A quantitative study on the effect of nano SiO2, nano Al2O3 and nano CaCO3 on the physicochemical properties of very high volume fly ash cement composite. European Journal of Environmental and Civil Engineering. 2017:1-16.

    [17.]       Jing X, Gong W, Feng Z, Zhang M, Meng X, Zheng B. Novel Comb-Like Copolymer Dispersant for Polypropylene/CaCO3 Composites and Its Influence on Dispersion, Crystallization, Mechanical, and Thermal Properties. Polymer-Plastics Technology and Engineering. 2017:1-11.

    [18.]       ASTMC33. Standard Specification for Concrete Aggregates. 2010.

    [19.]       ASTMC1621. C09. 47. 2014. Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. ASTM C1621/C1621M-14. West Conshohocken, PA: ASTM International.

    [20.]       Sturrup V, Vecchio F, Caratin H. Pulse velocity as a measure of concrete compressive strength. Special Publication. 1984;82:201-28.

    [21]        ASTMC597-16. Standard Test Method for Pulse Velocity Through Concrete. 2016.

    [22.]       FAROKHZAD R, YASERI S, ENTEZARIAN MH, YAVARI A. Investigating Effects of Sulfates on Compressive Strength of Different Types of Pozzolan Concrete and Measuring Penetration Rate by Ultrasound Tests at Different Ages. 2016.