مطالعه نفوذپذیری و مقاومت بتن‎های حاوی دوده سیلیسی، زئولیت و خاکستر بادی با استفاده از روش ”محفظه استوانه‎ای“ و استاندارد بریتانیا

نوع مقاله : علمی - پژوهشی

نویسندگان

1 عضو هیات علمی، دانشگاه بین المللی امام خمینی (ره)

2 گروه عمران، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

بتن یک ماده متخلخل می‎باشد. آب و سیالات دیگر می‎توانند به داخل منافذ آن نفوذکرده و دوام آن را تحت تأثیر قرار دهند. لذا نفوذپذیری یکی از مهمترین عوامل مؤثر در دوام سازه‎های بتنی می‎باشد. طرح و ساخت بتنی که ضمن تأمین نمودن مقاومت فشاری مطلوب، نفوذپذیری کمتری نیز داشته باشد از اهمیت ویژه‎ای برخوردار است. در این مقاله، نفوذپذیری نمونه‎های بتنی 7 روزه حاوی پوزولان‎های مختلف با استفاده از روش محفظه استوانه‎ای مورد بررسی قرار گرفته است. از درصدهای وزنی دوده سیلیسی، زئولیت و خاکستر بادی برابر با 5، 10، 15 و 20 درصد که جایگزین سیمان پرتلند تیپ 2 شده‎اند و روش موجود در استاندارد بریتانیا (BS EN 12390-8:2009) برای مقایسه نتایج به دست آمده استفاده شده است. همچنین درصد حجمی منافذ نفوذپذیر مطابق با استاندارد ASTM C642-06 اندازه‎گیری شده و از آن به عنوان معیاری برای سنجش نفوذپذیری استفاده گردیده است. با استفاده از نتایج به دست آمده از روش پیچش نیز مقاومت نمونه‎ها مورد بررسی قرار گرفته است. نتایج آزمایش‎های نفوذپذیری نشان می‎دهد که پوزولان‎های مورد استفاده در این تحقیق باعث کاهش درصد حجمی منافذ نفوذپذیر و درنتیجه کاهش نفوذپذیری نمونه‎ها می‎شوند، در حالی که دوده سیلیسی باعث افزایش مقاومت فشاری نمونه‎ها و زئولیت و خاکستر بادی باعث کاهش در مقاومت فشاری نمونه‎ها شده‎اند. همچنین تطابق خوبی بین نتایج روش‎های محفظه استوانه‎ای و استاندارد بریتانیا مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Studying the permeability and strength of concretes containing silica fume, zeolite and fly ash using “Cylindrical chamber” method and British standard

نویسندگان [English]

  • Alireza Kaboudan 2
  • Mohammadreza Keshtkar 2
2 Dept. of Civil Engineering, Engineering Faculty, International Imam Khomeini University, Qazvin, Iran
چکیده [English]

Concrete is a porous material. Water and other fluids can penetrate it and effect its durability. So permeability is one of the most effective parameters of concrete structures durability. Design and construction of concrete, which has a less permeability in addition of providing the desirable compressive strength is of great importance. In this paper, the permeability of 7-day concrete samples containing different pozzolans was investigated using cylindrical chamber method. The mass percentages of silica fume, zeolite and fly ash equal to 5, 10, 15 and 20 percentage that replace type II Portland cement and the existing method of British standard (BS EN 12390-8:2009) were used to compare the obtained results. The percentage of the permeable voids volume was also measured based on ASTM C642-06 standard and used as an index to evaluate permeability. Samples strength was also investigated using the results obtained from the twist-off method. The results of the permeability tests show that all of the pozzolans used in this investigation decrease the percentage of the permeable voids volume and consequently decrease the samples permeability, while silica fume increases the samples compressive strength and zeolite and fly ash decrease samples compressive strength. A very good correlation was also observed between the cylindrical chamber and British standard method results.

کلیدواژه‌ها [English]

  • Durability
  • Permeability
  • Silica fume
  • Zeolite
  • Fly ash
  • Cylindrical chamber
  • British standard
  • Twist-off method
[1] Shariati, M., Ramli-Sulong, N.H., Abernejad, M.M., Shafigh, P. and Sinaei, H. (2011). Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests. Scientific Research and Essays, 6(1), pp 213–220.
[2] Sinaei, H., Shariati, M., Abna, A.H., Aghaei, M. and Shariati, A. (2012). Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS. Scientific Research and Essays, 7(21), pp 2002–2009.
[3] Hamidian, M., Shariati, M., Arabnejad, M.M.K. and Sinaei, H., 2011. Assessment of high strength and light weight aggregate concrete properties using ultrasonic pulse velocity technique. International Journal of Physical Sciences, 6(22), pp 5261–5266.
[4] Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014). An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups. Smart Structures and Systems, 14(5), pp 785–809.
[5] Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2013). Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios. Structural Engineering and Mechanics, 48(6), pp 833–848.
[6] Fanaie, N., Aghajani, S. and Dizaj, E.A. (2016). Theoretical assessment of the behavior of cable bracing system with central steel cylinder. Advances in Structural Engineering, 19(3), pp 463–472.
[7] Moghaddam, H., Fanaie, N. and Hamzehloo, H. (2009). Uniform hazard response spectra and ground motions for Tabriz. Journal of Scientia Iranica, 16(3), pp 238–248.
[8] Jahanbakhti, E., Fanaie, N. and Rezaeian, A. (2017). Experimental investigation of panel zone in rigid beam to box column connection. Journal of Constructional Steel Research, 137, pp 180–191.
[9] Hossain, K. M. A. (2004). Chloride induced corrosion of reinforcement in volcanic ash and pumice based blended concrete. Cement and Concrete Composites, 39 (2), pp 201–210
[10] Hossain, K. M. A., and Lachemi, M. (2003). Corrosion resistance and Chloride diffusivity of volcanic ash blended cement mortar. Cement and Concrete Composites, 34 (4), pp. 695–702.
[11] Mehta, P.K., (1986). Concrete. Structure, properties and materials. Englewood Cliffs: Prentice-Hall.
[12] Shah, S.P. and Ahmad, S.H. (1994). High performance concrete. Properties and applications. New York: McGraw-Hill
[13] Detwiler, R. J., Bhatty, J. I. and Bhattacharja, S. (1996). Supplementary Cementing Materials for Use in Blended Cements. Skokie: Portland Cement Association
[14] Kjellsen, K. O., Wallevik, O. H. and Hallgren, M. (1999). On the compressive strength development of high performance concrete and paste - effect of silica fume. Materials and Structures, 32 (1), pp. 63-69.
[15] Hooton, R.D. (1993). Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack freezing and thawing, and alkali–silica reactivity. ACI Mater. J. 90 (2), pp 143–152.
[16] Diab, A.M., Awad, A.E.M., Elyamany, H.E. and Elmoaty, A.E.M.A. (2012). Guidelines in compressive strength assessment of concrete modified with silica fume due to magnesium sulfate attack. Construction and Building Materials, 36.  pp 311–318.
[17] Yajun, J. and Cahyadi, J.H. (2003). Effects of densified silica fume on microstructure and compressive strength of blended cement pastes. Cement and Concrete Research, 33 (10), pp 1543–1548.
[18] Nai-qian, F., Hsia-ming, Y. and Li-Hong, Z. (1988). The strength effect of mineral admixture on cement concrete. Cement and concrete research, 18 (3): pp 464–472.
[19] Feng, N.Q., Li, G.Z. and Zang, X.W. (1990). High-strength and flowing concrete with a zeolitic mineral admixture. Cement, concrete and aggregates, 12 (2), pp 61–69.
[20] Liguori, B., Caputo, D., Marroccoli, M. and Colella, C. (2004). Evaluation of zeolite-bearing tuffs as pozzolanic addition for blended cements. ACI Special Publication, 221, pp 319–334.
[21] Perraki, T., Kakali, G. and Kontoleon, F. (2003). The effect of natural zeolites on the early hydration of Portland cement. Microporous and mesoporous materials, 61(1), pp 205–212.
[22] Massazza, F. (1998). Pozzolana and pozzolanic cements. Lea’s chemistry of cement and concrete, 4th ed, pp 471–631.
[23] Shi, H.S., Xu, B.W. and Zhou, X.C. (2009). Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater. 23 (5), pp 1980–1985.
[24] Najimi, M. (2010). Investigating the properties of concrete containing natural zeolite as supplementary cementitious materials, Building and Housing Research Center, Tehran
[25] Canpolat, F., Yılmaz, K., Köse, M.M., Sümer, M. and Yurdusev, M.A. (2004). Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement and Concrete Research, 34 (5), pp 731–735.
[26] Poon, C.S., Lam, L., Kou, S.C. and Lin, Z.S. (1999). A study on the hydration rate of natural Zeolitee blended cement pastes. Construction and Building Materials, 13 (8), pp 427–432.
[27] Bilodeau, A., Sivasundaram, V., Painter, K.E. and Malhotra, V.M. (1994). Durability of concrete incorporating high volumes of fly ash from sources in US, ACI Mater. J., 91 (1), 3–12.
[28] Joshi, R.C. and Lohita, R.P. (1997). Fly ash in concrete: production, properties and uses. Amsterdam: Gordon and Breach.
[29] Han, S.H., Kim, J.K. and Park. Y. D. (2003). Prediction of compressive strength of fly ash concrete. Cement and Concrete Research, 33 (7), pp 965–971.
[30] Oner, A., Akyuz, S. and Yildiz, R. (2005). An Experimental Study on Strength Development of Concrete Containing Fly Ash and Optimum Usage of Fly Ash in Concrete, Cement and Concrete Research, 35 (6), pp 1165–1171.
[31] Poon, C.S., Lam, L. and Wong, Y.L. (2000). A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30 (3), pp 447–455.
[32] Neville, A.M. (1995). Properties of concrete. London: Longman.
[33] Chahal, N. and Siddique, R. (2013). Permeation properties of concrete made with fly ash and silica fume:Influence of ureolytic bacteria. Construction and Building Materials, 49, pp 161–174.
[34] Naderi, M. (2010). Determine of concrete, stone, mortar, brick and other construction materials permeability with cylindrical chamber method. Registration of Patent in Companies and industrial property Office. Reg. N. 67726. Iran.
[35] BS EN 12390-8. (2009). Testing Hardened Concrete – Part 8: Depth of Penetration of Water under Pressure. British Standard Institution, London.
[36] ASTM C642-06. (2006). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, West Conshohocken, PA.
[37] Naderi, M. (2002). Twist-off method. Registration of Patent in Companies and industrial property Office, Iran.
[38] ASTM C136-06. (2006). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA.
[39] Hanumesh, B. M., Varun, B. K. and Harish, B. A. (2015). The mechanical properties of concrete incorporating silica fume as partial replacement of cement. International Journal of Emerging Technology and Advanced Engineering, 5(9), p 270.
[40] Ajileye, F. V. (2012). Investigations on microsilica (Silica Fume) as partial cement replacement in concrete. Global Journal of Research In Engineering, 12(1-E).
[41] Najimi, M., Sobhani, J., Ahmadi, B. and Shekarchi, M. (2012). An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35, pp 1023–1033.
[42] Juengsuwattananon, K. and Seraphin, S. (2010). Effects of Zeolite A on the microstructure and strength development of blended cement. Journal of the Microscopy Society of Thailand, 24(2), pp 94–98.
[43] Islam, M.M. and Islam, M.S. (2013). Strength and durability characteristics of concrete made with fly-ash blended cement. Australian Journal of Structural Engineering, 14(3), pp 303–319.
[44] Bendapudi, S.C.K. and Saha, P. (2011). Contribution of fly ash to the properties of mortar and concrete. International Journal of Earth Sciences and Engineering, 4(6), pp 1017–1023.
[45] Elawady, E., El Hefnawy, A.A. and Ibrahim, R.A. (2008). Comparative Study on Strength, Permeability and Sorptivity of Concrete and their relation with Concrete Durability. Certified International Journal of Engineering and Innovative Technology, 4(4), pp 132–139.
[46] Gjrov, O.E. (1983). Durability of concrete containing condensed silica fume. ACI Special Publications, 79, pp 695–708.
[47] Yu, Z., Ni, C., Tang, M. and Shen, X. (2018). Relationship between water permeability and pore structure of Portland cement paste blended with fly ash. Construction and Building Materials, 175, pp 458–466.
[48] Thomas, M.D.A. and Matthews, J.D. (1992). The permeability of fly ash concrete. Materials and Structures, 25(7), pp 388–396.
[49] Ahmadi, B. and Shekarchi, M. (2010). Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32(2), pp 134–141.
[50] de la Cruz Barroso, J.C., del Campo, J.M. and Aranguren, D.C. (2015). Comparative study on porosity and permeability of conventional concrete and concrete with variable proportions of natural zeolite additions. Revista de la Construcción, 14(3), pp 72–78.
[51] Chia, K.S. and Zhang, M.H. (2002). Water permeability and chloride penetrability of high-strength lightweight aggregate concrete. Cement and concrete research, 32(4), pp 639–645.