بررسی اثر تیغه میراگر حلقوی بر رفتار دینامیکی مخازن هوایی ذخیره‌ سیال تحت بار انفجاری

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 گروه آب - سازه های هیدرولیکی ، دانشکده مهندسی عمران ، دانشگاه تبریز، تبریز، ایران

2 دانشگاه تبریز

چکیده

در دهه‌های گذشته به دلیل انفجارهای حاصل از بمب‌گذاری‌ها و حملات تروریستی و دیگر انفجارهای غیرعمدی روی‌داده، توجه به بارگذاری انفجار و پاسخ سازه‌های زیربنایی تحت آن اهمیت ویژه‌ای پیداکرده است. یکی از مهم‌ترین سازه‌های زیربنایی، مخازن هوایی ذخیره‌ مایعات می‌باشند که نقش مهم و تأثیرگذاری را در نگهداری مایعات در صنایع بر عهده دارند. این مخازن به‌طور گسترده‌ای در نگهداری آب در جوامع شهری و تصفیه‌خانه‌ها، نگهداری نفت در مجتمع‌های نفتی و پالایشگاه‌ها و مواد شیمیایی و خوراکی در صنایع به‌کاربرده می‌شوند. در این پژوهش به تاثیر تیغه های میراگر حلقوی، که در ارتفاع معینی از کف مخازن هوایی استوانه ای نصب شده است، بر پاسخ و رفتار دینامیکی مخازن نگه‌دارنده‌ سیال تحت بار انفجار پرداخته شده است. بدین منظور مخزن فولادی تحت بار انفجار با در نظر گرفتن اندرکنش سازه و سیال و با استفاده از فرمول‌بندی کوپل اولر- لاگرانژی که مزیت در نظر گرفتن معادلات اساسی مکانیک سازه و مکانیک سیالات را به‌صورت کوپل دارد، توسط نرم‌افزار ABAQUS به‌صورت سه‌بعدی، مدل‌سازی گردید. به منظور بررسی دقیق تر موضوع سه نسبت هندسی مختلف برای مخزن هوایی منظور گردیده و سطح آب در مخزن نیز در دو حالت پر و نیمه پر مد نظر قرار گرفت. با توجه به نتایج حاصل شده ملاحظه می شود با قراردادن تیغۀ میراگرحلقوی شاهد کاهش لنگر واژگونی و اسلاشینگ در هر دو حالت مخزن پر و نیمه‌پرمی باشیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluated of Annular Baffle on Dynamic behavior of Elevated Liquid Storage Tanks under Blast Loading

نویسندگان [English]

  • Farhoud Kalateh 1
  • Rafiq Fani 2
1 Civil Engineering Department, University of Tabriz, Tabriz-Iran
2 University of Tabriz
چکیده [English]

In last decades with an increase in the number of terrorist attacks and other unintentional explosions, the study of blast loading and response of infrastructures have gained much importance. Elevated liquid storage tanks are one of the major infrastructures that play important role in industries. Liquid storage structures can use for the storage of water, milk, liquid petroleum and chemicals in industries. Blast loading on liquid storage structures may lead to disaster due to water crisis. Hence, understanding the dynamic behavior of liquid storage structures under blast loading through numerical simulations is of utmost importance. In the present study, three dimensional (3D) finite element (FE) simulations of a steel water storage elevated tank with annular baffle that put in the specific height of tank’ s wall subjected to blast loading is investigated using the FE software ABAQUS. The coupled Euler–Lagrange (CEL) formulation in ABAQUS has been adopted herein which has the advantage of considering the coupling of structural mechanics and fluid mechanics fundamental equations. Three different aspect ratio (H/R) are considered in the present study and two different water levels, i.e., full tank and half full tank are considered. Obtained results show that baffle reduces overturning moments and sloshing in both cases of full and half full tanks.

کلیدواژه‌ها [English]

  • Elevated Water storage tanks
  • Blast loading
  • Annular baffle
  • Finite elements
  • Coupled Euler–Lagrange formulation
 [1] Chang J. I.,Lin C C.,(2006), A study of storage tank accidents. Journal of Loss Prevention in the Process Industries 19: 51–59.
[2] Stein L. R., Gentry R. A., Hirt C.W.,(1977), Computational simulation of transient blast loading on three-dimensional structures. Comput Methods Appl Mech Eng., 11:57–74.
[3] Koko T.S., Olson M.D.,(1991), Non-linear transient response of stiffened plates to air blast loading by a super element approach. Comput Methods Appl Mech Eng., 90:737–60.
[4] Guruprasad S, Mukherjee A.(2000), Layered sacrificial claddings under blast loading Part -I analytical studies. Int J Impact Eng., 24(9):957–73.
[5] Guruprasad S., Mukherjee A.,(2000), Layered sacrificial claddings under blast loadingPart-II experimental studies. Int J Impact Eng 24(9):975–84.
[6] Goel M. D., Matsagar V. A., Gupta A.K.,(2011), Dynamic response of stiffened plates under air blast. Int J Prot Struct 2(1):139–55.
[7] Kowal-Michalska K., Kubiak T., Swiniarski J.,(2011), Influence of blast pressure modeling on the dynamic response of conical and hemispherical shells. Thin-Walled Struct 49(5):604–10 .
[8] Goel M.D., Matsagar V.A., Marburg S., Gupta A.K.,(2012), Comparative Performance of Stiffened Sandwich Foam Panels under Impulsive Loading. J Perform Constr Facil ASCE, 27(5):540–9.
[9] Tiwari R., Jain S., Chakraborty T., Matsagar V.,(2012), Dynamic response of reinforced concrete sacrificial wall under blast loading. In: Proceedings of the 10th World Congress on Computational Mechanics (WCCM 2012), São Paulo, Brazil.
[10] Higgins W, Chakraborty T, Basu D.(2012), A high strain-rate constitutive model for sand and its application I finite-element analysis of tunnels subjected to blast. Int J Numer Anal Methods Geomech 37(15):2590–610.
 [11] Bambach M.R.,(2013), Design of metal hollow section tubular columns subjected to transverse blast loads. Thin-Walled Struct 68:92–105.
[12] Mittal V., Chakraborty T., Matsagar V.,(2014), Dynamic analysis of liquid storage tank under blast using coupledEuler–Lagrange formulation. Thin-Walled Structures 84:91–111.
[13] Biswal, K., Bhattacharyya, S. and Sinha, P., (2003), “Free-vibration analysis of liquid-filled tank with baffles,” Journal of Sound and Vibration, 259, pp 177–192.
 
[14] Miles, J.W., (1958), “Ring damping of free surface oscillations in cylindrical tank,” Journal of Applied Mechanics, 25, pp 274–276.
 
[15] Silveria, M.A., Stephens, D.G. and Leonard, H.W., (1961), “An experimental investigation of damping of liquid oscillations in cylindrical tanks with various baffles,” NASA Report TN–715.
 
[16] Welt, F. and Modi, V.J., (1992), “Vibration damping through liquid sloshing, Part I: a nonlinear analysis,” Journal of Vibration and Acoustics, 114, pp 10–16.
 
[17] Maleki, A. and Ziyaifar, M., (2008), “Sloshing damping in cylindrical liquid storage tank with baffles,” Journal of Sound and Vibration, 311, pp 372–385.
 
[18] Gedikli, A. and Erguven, M.E., (1999), “Seismic analysis of liquid storage tank with baffle,” Journal of Sound and Vibration, 223, pp 141– 155.
 
[19] Cho, J.R., Lee, H.W. and Kim, K.W., (2002). “Free vibration analysis of baffled liquid-storage tanks by structural al-acoustic finite element formulation,” Journal of Sound and Vibration,
258, pp 847–866.
 
[20] Cho, J.R. and Lee, H.W., (2004). “Numerical study on liquid sloshing in baffled tank by nonlinear finite element method,” Computer Methods in Applied Mechanics and Engineering,
193, pp 2581–2598.
 
[21] Cho, J.R., Lee, H.W. and Ha, S.Y., (2005), “Finite element analysis of resonant sloshing response in 2-D baffled tank,” Journal of Sound and Vibration, 288, pp 829–845.
 
[22] Firouz-Abadi, R.D., Haddadpour, H., Noorian, M.A. and Ghasemi, M., (2008), “A 3D BEM model for liquid sloshing in baffled tanks,” International Journal for Numerical methods in Engineering, 76,1419–1433.
 
[23] Arab, M. Khaji N., (2012) “' Seismic analysis of fluid reservoir thank with annular baffel using boundary element method”, Omran Modars, 12(2),11-22.(In persian)
 
[24] Johnson G. R.,Cook W. H.,(1985), Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatvres and Pressures. Engineering Fracture Mechanics, 21(1), 31-48.
 
[25]Kinney, G.F. and K.J. Graham,(1985), Explosive shocks in air., Berlin and New York, Springer-Verlag, 282 ,1985-1999.
[26] Baker, Wilfrid E.,(1973), Explosions in the Air, University of Texas Pr., Ausint.
[27] Abaqus Analysis User Manual (6.14),2015.
[28] Guzas, E.L. and Earls,C. J.,(2010), Air blast load generation for simulating structural response. Steel Composit. Struct,  10,429-455.