نوع مقاله: علمی - پژوهشی
نویسندگان
1 دانشجوی دکتری مهندسی عمران، دانشکده مهندسی عمران، دانشگاه کردستان، سنندج، ایران
2 دانشجوی دکتری مهندسی نساجی، دانشکده مهندسی نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران
3 استادیار، دانشکده مهندسی مکانیک، دانشگاه کردستان، سنندج، ایران
4 استاد، دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان، ایران
5 دانشیار، دانشکده مهندسی نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Using of polymeric fibers for reinforced concrete structures has significantly developed in recent years. Polymeric fibers start their contribution in the behavior of concrete members after cracking. In order to a careful investigation into post-cracking behavior need to apply fracture mechanic concept (growth of cracks) in reinforced concrete members. For this purpose, in this research 14 concrete prisms (100×100×400 mm in dimensions) with 35 mm notch depth (at the center of tensile side) for four-point flexural strength test were fabricated. Fiber composition, geometry and hybridization percent were varied in these samples. Derived outputs illustrated that macro polypropylene (PP) fiber has no significant effect on concrete ductility, whereas it leads to increase the flexural strength. But micro polyester (PET) and PP fibers have more effective performance during forming cracks in concrete members. PET and PP fibers have a more suitable function during concrete cracking and the samples containing these fibers have no significant drop in their bearing while the cracking is started. In addition, samples reinforced with PP and PET fibers indicated that by increase in macro fibers, the flexural strength were increased where as ductility indices decreased. In general, samples reinforced with %60 of PP macro fibers and %40 PET micro fibers have the best performance.
کلیدواژهها [English]
[1] di Prisco, M. Plizzari, G. Vandewalle, L. (2009). Fiber reinforced concrete: new design perspectives. Materials and Structures, 42(9), 1261–81.
[2] Afroughsabet, V. (2016). High-performance fiber-reinforced concrete: a review. materials science, Vol. 51, pp. 6517–6551.
[3] Byung, H. Ji, C. Young, C. (2007). Fracture behavior of concrete members reinforced with structural synthetic fibers. Engineering Fracture Mechanics, Vol. 74, pp. 243–257.
[4] Bencardino, F. Rizzuti, L. Spadea, G. Swamy, R. (2010). Experimental evaluation of fiber reinforced concrete fracture properties. Composites Part B: Engineering, Vol. 41, pp. 17–24.
[5] Caggiano, A. Cremona, M. Faella, C. Lima, C. Martinelli, E. (2012). Fracture behavior of concrete beams reinforced with mixed long/short steel fibers. Construction and Building Materials, Vol. 37, pp. 832–840.
[6] Alberti, M. Enfedaque, A. Gálvez, J. (2016). Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fiber length and specimen size. Engineering Fracture Mechanics, Vol. 154, pp. 225–244.
[7] Hosseini, A. Mostofinejad, D. Hajialilue-bonab, M. (2012). Displacement and strain field measurement in steel and RC beams using particle image velocimetry. Engineering Mechanics, Vol. 4, pp. 1–10.
[8] UNI 11039-2. 2003. Steel Fiber Reinforced Concrete—Part2: Test Method for Determination of First Crack Strength and Ductility Indexes.
[9] EN 12390-3. 2009. Testing Hardened Concrete—Part3: Compressive Strength of Test Specimens.
[10] ACI Committee 211. ACI 211.1-91. 2002. Standard practice for selecting proportions for normal, Heavyweight, and Mass Concrete, Farmington Hills, MI, USA.
[11] ASTM D 3822. 2014. Standard Test Method for Tensile Properties of Single Textile Fibers.