بررسی رفتار لرزه‌ای سیستم دوگانه کوتاه مرتبه قاب خمشی و پانل‌های مهاربندی شورون دارای ستون دوخت

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانش آموخته کارشناس ارشد 0939-0459011 0912-1030592

2 دانش آموخته کارشناسی ارشد

3 هیات علمی (استادیار)، دانشکده مهندسی ، گروه عمران، دانشگاه خوارزمی، تهران

چکیده

در این پژوهش عملکرد لرزه‌ای ساختمان‌های فولادی 5 طبقه با چهار سیستم دوگانه قاب خمشی - مهاربندی شورون، شورون همراه با ستون دوخت، شورون معکوس و شورون معکوس همراه با ستون دوخت بر اساس انجام تحلیل‌های تاریخچه زمانی غیر خطی تحت مجموعه‌ای از رکوردهای سه مولفه‌ای حوزه دور و نزدیک مورد ارزیابی قرار گرفته است. مشخصه‌های رفتاری اسکلت مقاوم دارای پانل-های مهاربند شورون توسط عملکرد نزدیک به وضعیت کمانش اعضای مورب تحت فشار، کنترل می‌گردد. ملاحظه شده است که هنگام وقوع زلزله‌های شدید، این نوع اسکلت مقاوم می‌تواند دچار کاهش تدریجی مشخصه‌های مقاومتی گردد. نمود اثرات دو پدیده کاهش سختی و زوال مقاومت، قابل توجه خواهد بود. یک راهکار مناسب جهت مرتفع ساختن این ضعف، اضافه کردن المان ستون دوخت در پانل مهاربندی شده است. معیار اصلی در انتخاب رکوردهای حوزه نزدیک، وجود پالس منفرد یا ترکیبی با پریود بلند و دامنه بزرگ در تاریخچه زمانی سرعت زمین بوده است. ملاحظه شد که وجود این ویژگی، پارامترهای پاسخ لرزه‌ای سازه را به شدت تحت تاثیر قرار می‌دهد. تمامی سازه‌ها با پلان‌های منظم و بر اساس ضوابط لرزه‌ای موجود در آیین نامه 2800 و نیز مباحث ششم و دهم مقررات ملی ساختمان طراحی شده‌اند. دیدگاه خاص این پژوهش در ارزیابی تغییرات پاسخ‌های بیشینه تغییرمکان نسبی، سرعت نسبی، شتاب مطلق طبقات، مکانیزم تشکیل مفاصل پلاستیک و نیروی محوری ستون‌ها می باشد. نتایج به دست آمده، نشان دهنده برتری حدودی عملکرد لرزه ای اسکلت دوگانه دارای المان‌های ستون دوخت (زیپر) نسبت به همین سیستم مقاوم در حالت نبود المان‌های زیپر می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Seismic Response of Low-Rise Dual Resistant System comprising of Steel Moment Frame and Zipper Chevron Braced Panels

نویسندگان [English]

  • Ramin Madani 1
  • Ali Mortazavi 2
  • Afshin Meshkat-Dini 3
1 MSc Graduated
2 MSc Graduated
3 Professor of Structural-Earthquake Engineering - Kharazmi University - Tehran - IRAN
چکیده [English]

In this research, the seismic performance of 5story buildings having dual systems of moment frame and chevron bracings, chevron panels along with zipper columns, inverted chevron panels, inverted chevron panels along with zipper columns is evaluated based on conducting nonlinear time history analyses under an ensemble of 3-component far and near-field records. Behavioral features of resistant skeletons having chevron braced panels are controlled through a near-buckling performance of diagonal limbs under pressure. It has been observed that when intensive earthquakes occur, this type of resistant skeleton reveals a gradual loss in resistant features. The appearance of the effects of the two phenomena of stiffness deterioration and strength degradation would be remarkable. A desirable solution in dealing with this weakness is adding a zipper column to the braced panel. The major criterion in selecting near-field records has been the existence of distinct or compound pulses with long period and large amplitude in the ground velocity time history. It has been noticed that this feature affects the seismic response parameters of the building to a great extent. All structures have been designed with a regular plan and according to seismic provisions in the code 2800 and also the 6th and 10th issues of the Iranian National Building Regulations. The specific outlook of this research lies in assessing the changes in maximum displacement responses, relative velocity, absolute acceleration of the floors, plastic hinge formation mechanism and the axial force of the columns. Results show a moderate superiority in the seismic performance of dual skeleton having zipper elements compared to the same resistant system with a lack of zippers.

کلیدواژه‌ها [English]

  • Dual Resistant System
  • Chevron Bracing
  • Zipper Column Element
  • Rigid Frame
  • Velocity Pulse
[1] Ali, M.M. and Moon, K.S.; (2007). “Structural developments in tall buildings: Current trends and future prospects”, Architectural Science Review, 50 (3), 205-223.
[2] MacRae, G.D. and Roeder, C.; (2001). “Near-fault ground motion effects on simple structures”, Journal of Structural Engineering, 127 (9), 996-1004.
[3] Yang, D., Zhang, C., & Liu, Y.; (2015). “Multi-fractal characteristic analysis of near-fault earthquake ground motions”, Soil Dynamics and Earthquake Engineering, 72, 12–23.
[4] Puglia, R., Russo, E., Luzi, L., D’Amico, M., Felicetta, C., Pacor, F., & Lanzano, G.; (2018). “Strong-motion processing service: a tool to access and analyse earthquakes strong-motion waveforms”, Bulletin of Earthquake Engineering (Springer),  https://doi.org/10.1007/s10518-017-0299-z
[5] Somerville P.G.; (2003). “Magnitude scaling of the near fault rupture directivity pulse”, Physics of the Earth and Planetary Interiors, 137, 201–212.
[6] Kalkan, E. and Kunnath, S.K.; (2006). “Effects of fling step and forward directivity on seismic response of buildings”, Earthquake Spectra, 22 (2), 367-390.
[7] Raghunandan, M., & Liel, B.; (2013). “Effect of ground motion duration on earthquake-induced structural collapse”, Structural Safety, 41, 119-133.
[8] Oregon, J.P., Diosdado, A.M., Navarro, A.H.R., Saenz, A.G., Brown, F.A.; (2018). “On the possible correlation between the Gutenberg-Richter parameters of the frequency-magnitude relationship”, Journal of Seismology, https://doi.org/10.1007/s10950-018-9757-6
[9] Sehhati, R., Rodriguez-Marek, A., ElGawady, M., & Cofer W.F.; (2011). “Effects of near-fault ground motions and equivalent pulses on multi-story structures”, Engineering Structures, 33, 767-779.
[10] Nazari, S., Keyvani, J., Meshkat-Dini, A., & Azhdarifar, M.; (2017). “Study on the seismic response of mid-rise bundled tube resistant systems under simulated closed form near-field records”, Asian Journal of Civil Engineering, 18(6), 961-976.
[11] Muto, M., Krishnan, S.; (2011). “Hope for the best, prepare for the worst: response of tall steel buildings to the shake-out scenario earthquake”, Earthquake Spectra, 27(2), 375-398.
[12] Narayan, S., Shrimali, M.K., Bharti, S.D., & Datta, T.K.; (2018). “Collapse of damaged steel building frames because of earthquakes”, Journal of Performance of Constructed Facilities (ASCE), 32(1), DOI:10.1061/(ASCE)CF.1943-5509.0001125.
[13] Rossi, P.P.; (2007). “A design procedure for tied braced frames”, Earthquake Engineering and Structural Dynamics, 36(14), 2227-2248.
[14] Bosco, M. and Rossi, P.P.; (2009). “Seismic behaviour of eccentrically braced frames”, Engineering Structures, 31(3), 664-674.
[15] Yeom, H.J. and Yoo, J.H.; (2018). “Analytical investigation on seismic behavior of inverted V-braced frames”, International Journal of Steel Structures, 18(1), 189-198.
[16] Shen, J., Wen, R., Akbas, B., Doran, B., Uckan, E.; (2014). “Seismic demand on brace-intersected beams in two-story X-braced frames”, Engineering Structures, 76, 295–312.
[17] Farahani, S., Amin Mohebkhah, A.; (2016). “Overstrength of displacement-based designed eccentrically braced steel frames”, Journal of Structural and Construction Engineering (JSCE), 2(4), 48-61.
[18] Vaseghi Amiri, J., Esmaeilnia Amiri, M., & Ganjavi B.; (2017). “Evaluation of performance levels of zipper-braced frames using structural damage index”, Civil Engineering Infrastructures Journal, 50(2), 353-374, DOI:10.7508/ceij.2017.02.009
[19] Kim, J., Cho, C., Lee, K.L. and Lee, C.; (2008). “Design of zipper column in inverted V-braced steel frames”, Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China.
[20] Hajdú, G., Papp, F.; (2018). “Safety assessment of different stability design rules for beam-columns”, Structures, 14, 376-388.
[21] Burks, L.S., Baker, J.W.; (2016). “A predictive model for fling-step in near-fault ground motions based on recordings and simulations”, Soil Dynamics and Earthquake Engineering ,80, pp. 119-126.
[22] Mollaioli, F.B., Decanini, L.D., and Panza, G.F.; (2006). “Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions”, Meccanica. 41 (1), 23-46.
[23] Riahi, H.T., Amouzegar, H. and Fosoul, S.A.S.; (2015) “Comparative study of seismic structural response to real and spectrum matched ground motions”, Scientia Iranica, 22 (1), 92.
[24] Bray, J.D., Rodriguez-Marek, A.; (2004). “Characterization of forward-directivity ground motions in the near-fault region”, Soil Dynamics and Earthquake Engineering, 24 (11), 815-828.
[25] Yaghmaei-Sabegh, S., Shoghian Z., Sheikh M.N.; (2014). “A new model for the prediction of earthquake ground motion duration in Iran”, Natural Hazards, 70, 69-92.
[26] Yang, D., Zhou J.; (2015). “A stochastic model and synthesis for near-fault impulsive ground motions”, Earthquake Engineering and Earthquake Engineering, 44, 243-264.
[27] Madani, R.; (2016). Assessment of seismic response of steel mid-rise dual resistant system of zipper chevron braced panels and rigid frames subjected to strong ground motions. MSc. Thesis. Kharazmi University.
[28] Gaur, H. and Goliya, R.K.; (2015). “Mitigating shear lag in tall buildings”, International Journal of Advanced Structural Engineering (IJASE), 7 (3), 269-279.
[29] Khazaei-Rad, P., Mortazavi S.A., & Meshkat-Dini, A. (2018). “Analytical aspects of velocity pulses on seismic behaviour of mid-rise compound skeleton of steel moment frame and eccentrically braced panels”, Journal of Structural and Construction Engineering (JSCE), Tehran, Iran, (Accepted).
[30] Hall, J.F.; (1997). “Parameter study of the response of moment resisting steel frame buildings to near-source ground motions”, Pasadena: California Institute of Technology.
[31] Durucan, C. and Durucan, A.R.; (2016). “Ap/Vp specific inelastic displacement ratio for the seismic response estimation of SDOF structures subjected to sequential near-fault pulse-type ground motion records”, Soil Dynamics and Earthquake Engineering, 89, 163-170.
[32] PEER Strong Motion Database. https://ngawest2.berkeley.edu/
[33] National Building Regulations Office, Ministry of Roads and Urban Development; (2014). "Iranian National Building Code: Design Loads for Buildings- Division 6". The 3rd Edition, Road, Housing and Urban Development Research Center, Tehran, Iran.
[34] Permanent Committee for Revising the Iranian Code of Practice for Seismic Resistant Design of Buildings, (2014). "Standard No. 2800. Iranian Code of Practice for Seismic Resistant Design of Buildings". The 4th Edition, Road, Housing and Urban Development Research Center, Tehran, Iran.
[35] National Building Regulations Office, Ministry of Roads and Urban Development; (2014). "Iranian National Building Code: Design and Construction of Steel Structures – Division 10". The 4th Edition, Road, Housing and Urban Development Research Center, Tehran, Iran.
[36] Federal Enenrgy Managment Agency (FEMA), (1998). Prestandard and Commentary for the Seismic Rehabilitation of Buildings: Report No. Fema 356: Createspace Independent Publication.
[37] Federal Enenrgy Managment Agency (FEMA), (2005). Improvement of Nonlinear Static Seismic Analysis Procedures, Applied Technology Council (ATC-55 Project), Report No. Fema 440.
[38] Chang, S.; (2009). “Nonlinear evaluations of unconditionally stable explicit algorithms”, Earthquake Engineering and Engineering Vibration, 8 (3), 329-340.
[39] Chang, S.; (2003). “Accuracy of time history analysis of impulses. Journal of Structural Engineering”, 129 (3), 357-372.
[40] SAP2000. (2010) Static and Dynamic Finite Element Analysis of Structures, Berkeley: Computers and Structures.
[41] Azhdarifar, M., Meshkat-Dini, A. and Moghadam A.S.; (2018) “Analytical effects of interior rigid bents arrangement on seismic response of tall buildings”, Journal of Seismology and Earthquake Engineering (JSEE), Tehran, Iran, (Accepted).