تعیین پارامترهای مدل رفتاری مواد الاستومری با استفاده از آزمایشات کشش تک محوره

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی سازه، دانشکده مهندسی عمران، دانشگاه رازی، کرمانشاه، ایران

2 استادیار، دانشکده مهندسی عمران، دانشگاه رازی، کرمانشاه، ایران

چکیده

مواد الاستومری به علت توانایی تحمل کرنش‌های کششی بیش از 500% بدون هیچ گونه گسیختگی و تغییر شکل دائمی موادی ایده‌آل جهت کاربرد در بسیاری از صنایع از جمله اتوموبیل سازی، هوافضا، انواع موتورهای مکانیکی و الکتریکی، انواع تایرها، و بسیاری از تجهیزات پزشکی می باشند. مضاف بر آن در پروژه های عمرانی بعنوان جداگرهای لرزه‌ای، تکیه‌گاه‌های سازه‌ای، میراگرهای الحاقی و غیره کاربرد دارند. پیش بینی رفتار تنش-کرنش مواد الاستومری دارای اهمیت زیادی در طراحی است. یکی از چالش های مهم در مدل سازی المان محدود قطعات الاستومری انتخاب مدل رفتاری مناسبی است که بتواند وضعیت الاستومر در کرنش‌های مختلف را به خوبی شبیه‌سازی نماید. در مواد الاستومری به دلیل غیر خطی بودن رابطه ی بین تنش و کرنش، به جای قانون هوک از مدل های رفتاری هایپر الاستیک استفاده می شود. در مقاله حاضر عملکرد مدل‌های هایپرالاستیک مختلف موجود در ادبیات تحقیق که بر اساس نتایج آزمایش کشش تک محوره کالیبره شده اند مورد ارزیابی قرار گرفته است. مدل سازی ها توسط نرم افزار المان محدود MSC.MARC انجام گرفته است. دقت مدل‌های رفتاری بررسی شده در بازه‌های مختلف کرنش کششی نشان داد، مدل‌های نئو-هوک و آرودا-بویس مدل های مناسبی برای محدوده ی کرنش های کوچک و مدل های اگدن و یه او مدل های رفتاری مناسبی برای محدوده ی گسترده ای از کرنش ها هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of constitutive model parameters of elastomeric materials using uniaxial tensile tests

نویسندگان [English]

  • Emad Saremi 1
  • Hamid Toopchi-Nezhad 2
1 MSc Student, Dept. of Civil Engineering, Razi Univ., Kermanshah, Iran
2 Assistant Professor, Dept. of Civil Engineering, Razi Univ., Kermanshah, Iran
چکیده [English]

The ability of elastomers to withstand very large strains (of beyond 500%) without breakage or permanent deformation makes them an ideal material for many applications, including, but not limited to, aerospace, medical, and automobile industries, bridge bearings, seismic isolation, and supplemental dampers. It is essential for design purposes to simulate accurately the response behavior of elastomers under various loading conditions. Given the nonlinear stress-strain relationship in an elastomeric material, a hyperelastic model, instead of Hooke's law, must be employed in stress analysis of the material. The literature includes a variety of constitutive hyperelastic models for elastomeric materials. However, choosing a suitable constitutive model that simulates the elastomer stress-strain behavior under different loading conditions is challenging. This paper examines the effectiveness of various hyperelastic models of which the constant model parameters have been evaluated using the results of a standard uniaxial tensile test conducted at different strain values. The model parameters are evaluated through a curve fitting technique performed by MSC-MARC, a commercial finite element software program. A thorough examination of the efficiency and accuracy of various hyperelastic constitutive models at different strain ranges shows that the Neo-Hooken and Arruda-Boyce are suitable models for the range of small deformations, and the Ogden and Yeoh models are suitable for a wide range of deformations.

کلیدواژه‌ها [English]

  • elastomer
  • rubber
  • constitutive models
  • hyperelastic behavior
  • uniaxial tensile test
  • Finite element model

[1] Smith, L. P. (1993). The language of rubber: an introduction to the specification and testing of elastomers (p. 1). Oxford: Butterworth-Heinemann.

[2] Mars, W. V. (2002). Cracking energy density as a predictor of fatigue life under multiaxial conditions. Rubber chemistry and technology, 75(1), 1-17.

[3] Coran, A.Y., )2006(. Elastomers. In: Handbook of Plastics Technologies. 2nd Edn. New York: McGraw-Hill Companies, 1-4.111.

[4] Diani, J., Fayolle, B., & Gilormini, P. (2009). A review on the Mullins effect. European Polymer Journal, 45(3), 601-612.

[5] Mullins, L. (1948). Effect of stretching on the properties of rubber. Rubber Chemistry and Technology, 21(2), 281-300.

[6] Whibley, I. J., Cutts, E., Philllip, M., & Pearce, D. (2005). Mechanical characterization and modeling of elastomers based on chemical composition. Constitutive Models for RubberIV, 437-441.

[7] Chagnon, G., Marckmann, G., & Verron, E. (2004). A comparison of the Hart-Smith model with Arruda-Boyce and Gent formulations for rubber elasticity. Rubber chemistry and technology, 77(4), 724-735.

[8] Kaliske, M., Nasdala, L., & Rothert, H. (2001). On damage modelling for elastic and viscoelastic materials at large strain. Computers & Structures, 79(22-25), 2133-2141.

[9] Dorfmann, A., & Ogden, R. W. (2004). A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. International Journal of Solids and Structures, 41(7), 1855-1878.

[10] MSC. Marc. (2016) Santa Ana, CA: MSC Software Corporation

[11] Gent, A.N., (2012). Elasticity. In: Engineering with Rubber. 3rd Edition. New York, Hanser Publishers, pp: 37-77.

[12] Boyce, M. C., & Arruda, E. M. (2000). Constitutive models of rubber elasticity: a review. Rubber chemistry and technology, 73(3), 504-523.

[13] Mooney, M. (1940). A theory of large elastic deformation. Journal of applied physics, 11(9), 582-592.

[14] Tschoegl, N. W. (1971). Constitutive equations for elastomers. Journal of Polymer Science. Polymer Chemistry, 1959-1970.

[15] Treloar, L. R. G. (1946). The elasticity of a network of long-chain molecules. —III. Transactions of the Faraday Society, 42, 83-94.

[16] Ogden, R. W. (1997). Non-linear elastic deformations. Courier Corporation.

[17] Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and technology, 66(5), 754-771.

[18] Arruda, E. M., & Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389-412.

[19] Gent, A. N. (1996). A new constitutive relation for rubber. Rubber chemistry and technology, 69(1), 59-61.

[20] Marckmann, G., & Verron, E. (2006). Comparison of hyperelastic models for rubber-like materials. Rubber chemistry and technology, 79(5), 835-858.

[21] Martelli, M. F. A., & Dusi, A. (1999). Implementation and validation of hyperelastic finite element models of high damping rubber bearings. Constitutive Models for Rubber, 239.

[22] Peeters, F. J. H., & Kussner, M. (1999). Material law selection in the finite element simulation of rubber-like materials and its practical application in the industrial design process. Constitutive Models for Rubber, 29-36.

[23] Ali, A., Hosseini, M., & Sahari, B. B. (2010). A review of constitutive models for rubber-like materials. American Journal of Engineering and Applied Sciences, 3(1), 232-239.

[24] Sasso, M., Palmieri, G., Chiappini, G., & Amodio, D. (2008). Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polymer Testing, 27(8), 995-1004.

[25] Achenbach, M., & Duarte, J. (2003). A finite element methodology to predict age-related mechanical properties and performance changes in rubber components. Constitutive Models for Rubber, 59-70.

[26] Ghosh, P., Saha, A., & Mukhopadhyay, R. (2003). Prediction of tyre rolling resistance using FEA. Constitutive Models for Rubber, 141-146.

[27] Seibert, D. J., & Schoche, N. (2000). Direct comparison of some recent rubber elasticity models. Rubber chemistry and technology, 73(2), 366-384.

[28] Pearson, I., & Pickering, M. (2001). The determination of a highly elastic adhesive's material properties and their representation in finite element analysis. Finite elements in analysis and design, 37(3), 221-232.

[29] Standard, A. S. T. M. (2006). D412-06 Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers–Tension. ASTM International, West Conshohoken, PA, USA.

[30] Marc, M.S.C., )2016(. Experimental elastomer analysis.