مطالعه اثرات جهت‌داری در رفتار لرزه‌ای اسکلت‌های ترکیبی دارای پیکربندی مهاربندی واگرا با دستک سخت کننده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد - مهندسی زلزله

2 هیات علمی (استادیار)، دانشکده مهندسی ، گروه عمران، دانشگاه خوارزمی، تهران

3 ریاست دانشکده مهندسی - دانشگاه خوارزمی دانشکده مهندسی عمران

چکیده

اسکلت دوگانه فولادی، یکی از سیستم‌های سازه‌ای کاربردی برای مقابله با نیروهای جانبی ناشی از زلزله‌ها بوده که علاوه بر شکل‌پذیری مطلوب، دارای سختی، پایداری دینامیکی و درجه نامعینی بالا نیز می‌باشد. ساختار رفتاری سیستم‌های مقاوم دوگانه بر اساس دو مود عملکرد خمشی و برشی تشکیل می‌گردد. این پژوهش شامل یک مطالعه بر روی رفتار لرزه ای غیرخطی اسکلت دوگانه مقاوم حاوی قاب های صلب و پانل ‌های مهاربندی واگرا با دستک‌های سخت‌کننده است. میزان تاثیرگذاری وجود المان‌های مذکور بر اساس انجام تحلیل-های تاریخچه زمانی غیرخطی تحت رکوردهای نیرومند سه مؤلفه ای ارزیابی گردیده است. یک رکورد پر قدرت حوزه نزدیک دارای خصوصیات ویژه‌ای است. وجود پالس‌های پر دامنه و با پریود بلند در بازه زمانی جنبش های نیرومند زمین، تجمع شدید انرژی جنبشی و آزاد شدن آن در یک مدت کوتاه از عمده تفاوت‌ها نسـبت به رکوردهای ثبت شده در حوزه دور از گسـل اسـت. نگرش ویژه این پژوهش در ارزیابی دامنه تغییرات بیشینه پاسخ و همچنین تاریخچه زمانی پارامترهای تغییرمکان نسبی، شتاب مطلق و سرعت نسبی طبقات و برش پایه سازه مطالعاتی می‌باشد. بررسی نتایج نشان دهنده نمود اثرات مشخص حاصل از پالس‌های بزرگ و پیوسته سرعت موجود در تاریخچه زمانی رکوردهای حوزه نزدیک بر تغییرمکان جانبی نسبی طبقات، همراه با ایجاد و گسترش سریع مکانیزم مفاصل پلاستیک در المان های اصلی اسکلت مقاوم دوگانه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study on the effects of rupture directivity on seismic behaviour of hybrid skeletal systems of eccentrically braced frames with knee rods

نویسندگان [English]

  • Saeed Kiaeinejad 1
  • Afshin Meshkat-Dini 2
  • Ali Massumi 3
1 MSc Student - Earthquake Engineering
2 Assistant Professor of Structural-Earthquake Engineering - Kharazmi University - Tehran - IRAN
3 Professor, Faculty of Engineering, Kharazmi University, Tehran
چکیده [English]

The dual steel resistant skeleton is one of the functional structural systems for resisting against lateral forces induced by earthquakes that in addition to the enhanced ductility possesses high stiffness, dynamic stability, and redundancy. Behavioural pattern of dual resisting systems is based on shear and bending performance modes. This research includes a study on the nonlinear seismic behaviour of dual eccentrically braced resisting frames with knee rods. The extent of the effectiveness of knee bracing has been assessed based on nonlinear time history analyses of the structure subjected to severe three-component earthquake records. A strong near-field ground motion possesses particular characteristics. The existence of high amplitude and long period pulses in recorded strong ground motions along with the severe accumulation of kinetic energy and its short release time, are of noticeable differences between near-field and far-field earthquake records. The particular objective of this research is to evaluate the amplitude of variations in maximum responses and to determine the time history of absolute acceleration, relative displacement, and relative velocity of floors along with the base shear of the studied models. Analysing the results indicate an observable appearance of the effects of large coherent velocity pulses presented in the time history of near-field earthquake records, on the relative lateral displacement of floors and on the rapid propagation of plastic hinge mechanism throughout the primary elements of dual resistant skeleton.

کلیدواژه‌ها [English]

  • Seismic Behaviour
  • Dual Resistant System
  • Eccentrically Braced Panel
  • Knee Rods
  • Near-field Zone
  • Velocity Pulse
  • Bosco, M., Ghersi, A., Marino, E.M., & Rossi, P.P. (2013). “Prediction of the seismic response of steel frames with concentric diagonal bracings”. The Open Construction and Building Technology Journal, 7, 118-128.
  • Binder, J., & Christopoulos, C. (2018). “Seismic performance of hybrid ductile‐rocking braced frame system”. Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.3022
  • Vaseghi Amiri, J., Esmaeilnia Amiri, M., & Ganjavi B. (2016). “Ductility reduction factor for zipper-braced frames”.  European Journal of Environmental and Civil Engineering, http://dx.doi.org/10.1080/19648189.2016.1262283
  • Sehhati, R., Rodriguez-Marek, A., ElGawady, M., & Cofer W.F. (2011). “Effects of near-fault ground motions and equivalent pulses on multi-story structures”, Engineering Structures, 33, 767-779.
  • Nassania, D.E., Hussein, A., & Mohammed, A. (2017). “Comparative response assessment of steel frames with different bracing systems under seismic effect”, Structures (Elsevier), 11, 229–242.
  • Durucan, C., & Durucan, R.A. (2016).” Ap/Vp specific inelastic displacement ratio for the seismic response estimation of SDOF structures subjected to sequential near fault pulse type ground motion records”, Soil Dynamics and Earthquake Engineering, 89, 163–170.
  • Puglia, R., Russo, E., Luzi, L., D’Amico, M., Felicetta, C., Pacor, F., & Lanzano, G. (2018). “Strong-motion processing service: a tool to access and analyse earthquakes strong-motion waveforms”, Bulletin of Earthquake Engineering (Springer), https://doi.org/10.1007/s10518-017-0299-z
  • Yang, D., Zhang, C., & Liu, Y. (2015). “Multi-fractal characteristic analysis of near-fault earthquake ground motions”, Soil Dynamics and Earthquake Engineering, 72, 12–23.
  • Kim, J., & Choi, H. (2005). “Response modification factors of chevron-braced frames”, Engineering Structures, 27, 285-300.
  • Sultana, P., & Youssef, A.M. (2016). “Prediction of local seismic damage in steel moment resisting frames”, Journal of Constructional Steel Research, 122, 122–137
  • Yang, D., & Zhou, J. (2015).” A stochastic model and synthesis for near-fault impulsive ground motions”, Earthquake Engineering and Structural Dynamics, 44, 243–264
  • Raghunandan, M., & Liel, B. (2013). “Effect of ground motion duration on earthquake-induced structural collapse”, Structural Safety, 41, 119-133.
  • Burks, S.L., & Baker, W.J. (2016). “A predictive model for fling-step in near-fault ground motions based on recordings and simulations”, Soil Dynamics and Earthquake Engineering, 80, 119–126.
  • Trifunac, M.D., & Todorovska, M.I. (2013). “A note on energy of strong ground motion during Northridge, California, earthquake of January 17, 1994”, Soil Dynamics and Earthquake Engineering, 47, 175-184.
  • Narayan, S., Shrimali, M.K., Bharti, S.D., & Datta, T.K. (2018). “Collapse of damaged steel building frames because of earthquakes”, Journal of Performance of Constructed Facilities (ASCE), 32(1), DOI:10.1061/(ASCE)CF.1943-5509.0001125.
  • Nazari, S., Keyvani, J., Meshkat-Dini, A., & Azhdarifar, M. (2017). “Study on the seismic response of mid-rise bundled tube resistant systems under simulated closed form near-field records”, Asian Journal of Civil Engineering, 18(6), 961-976.
  • Vahdani, R., Gerami, M., and Razi, (2017). “Seismic vulnerability assessment of steel moment-resisting
    frames based on local damage”, Journal of Earthquake and Tsunami, 12(1), DOI:10.1142/S1793431117500166.
  • National Building Regulations Office, Ministry of Roads and Urban Development; (2014). "Iranian National Building Code: Design Loads for Buildings- Divisio 6", The 3rd Edition, Tehran: Road, Housing and Urban Development Research Center.
  • Permanent Committee for Revising the Iranian Code of Practice for Seismic Resistant Design of Buildings, (2014). "Standard No. 2800. Iranian Code of Practice for Seismic Resistant Design of Buildings", The 4th Edition, Tehran: Road, Housing and Urban Development Research Center.
  • National Building Regulations Office, Ministry of Roads and Urban Development; (2014). "Iranian National Building Code: Design and Construction of Steel Structures – Division 10", The 4th Edition, Tehran: Road, Housing and Urban Development Research Center.
  • Kiaeinejad, S. (2018). The effect of strength reduction factor on seismic response of dual structures comprising of zipper EBF panels under directivity pulses, Thesis, Kharazmi University.
  • Federal Enenrgy Managment Agency (FEMA), (1998). Prestandard and Commentary for the Seismic Rehabilitation of Buildings: Fema 356: Createspace Independent Publication.
  • Khazaei-Rad, P., Mortazavi S.A., & Meshkat-Dini, A. (2017). “Analytical aspects of velocity pulses on seismic behaviour of mid-rise compound skeleton of steel moment frame and eccentrically braced panels”, Journal of Structural and Construction Engineering (JSCE), Iranian Society of Structural Engineering (ISSE), Tehran, Iran, (Accepted).
  • Rio, G., Soive, A., & Grolleau, V. (2005). “Comparative study of numerical explicit time integration algorithms”, Advances in Engineering Software, 36(4) , 252-265
  • Computers and Structures (2010). SAP2000, Structural Analysis Program, Berkeley.
  • Rahimi, R., Banan, Mo.R., & Banan, Ma.R. (2016). “Lateral cyclic behavior of zipper braced frames-considering connection details”, International Journal of Steel Structures, 16(1), 11-21.
  • Mahmoudi, M., & Zaree, M. (2013). “Performance based design using force reduction factor and displacement amplification factors for BFS”, Asian Journal of Civil Engineering (BHRC), 14(4), 577-586.
  • Banihashemi, M.R., Mirzagoltabar, A.R., & Tavakoli, H.R. (2015). “Performance-based plastic design method for steel concentric braced frames”, International Journal of Advanced Structural Engineering, 7, 281-293.