بررسی عددی اثر وصله‌های کامپوزیتی بر ضرایب شدت تنش لوله‌های استوانه‌ای حاوی ترک محیطی کامل

نوع مقاله : علمی - پژوهشی

نویسندگان

مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

چکیده

هدف از این مقاله مقاوم سازی لوله‌ها‌ی استوانه‌ای حاوی ترک محیطی کامل (داخلی و خارجی) تحت فشار داخلی با استفاده از وصله‌های کامپوزیتی به دلیل خواص بارزشان می‌باشد. در فرآیند تحقیق به منظور اعتبار بخشی مدل‌های پیشنهادی، ابتدا لوله استوانه‌ای حاوی ترک محیطی تحت کشش یکنواخت، مدل سازی و نتایج ضرایب شدت تنش با مقاله موجود مقایسه شده است. سپس به منظور اثبات صحت روند مدل سازی وصله کامپوزیتی و چسب، ورق آسیب دیده حاوی ترک مرکزی مدل‌سازی و نتایج ضرایب شدت تنش با مقاله موجود مورد بررسی و ارزیابی قرار گرفته است. محاسبه ضرایب شدت تنش در نوک ترک با بهره گیری از انتگرالJ حاصل شده است. پس از اثبات روند شبیه سازی در دو مرحله به بررسی عملکرد لوله‌های استوانه‌ای با ترک محیطی داخلی و خارجی کامل با ترک‌هایی با عمق نسبی 4/0 تا 8/0 با استفاده از روش اجزای محدود سه بعدی تحت فشار داخلی، قبل و پس از ترمیم پرداخته شده است. در پروسه ترمیم از کامپوزیت‌های بور/اپوکسی، کربن/اپوکسی و شیشه/اپوکسی استفاده است. نتایج تحقیق نشان داد استفاده از وصله‌های کامپوزیتی به میزان قابل توجهی ضرایب شدت تنش را کاهش داده و این کاهش در لوله‌ حاوی ترک محیطی خارجی کامل بیشتر از لوله حاوی ترک محیطی داخلی کامل می‌باشد. همچنین در فرآیند تحقیق تأثیر ضخامت وصله، زاویه قرارگیری الیاف و جنس چسب بر ضریب شدت تنش مورد بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of the effect of the composite patches on the stress intensity factors for a circumferential fully crack in pipes

نویسندگان [English]

  • Seyed Mehdi Nabavi
  • Amin Pourabdol
  • Majid Jamal-Omidi
Department of Aerospace Engineering, Malek Ashtar university of Technology
چکیده [English]

The purpose of this paper is to reinforce the pressurized pipe containing a fully circumferential crack (internal and external) using composite patches due to their remarkable properties. In the research procedure, in order to validate the proposed models, firstly, a cylindrical pipe with a circumferential crack subjected to the uniform tension was modeled and the results of stress intensity factors were compared with an existing paper. Then, in order to examine the modeling process of composite patch and adhesive, a damaged plate with a central crack was considered and the results of stress intensity factors were investigated and evaluated. Stress intensity factor at the crack tip was calculated using the J-integral. In this regard, using the 3D finite element method, the stress intensity factors in the crack before and after the pipe repair were evaluated with boron/epoxy, carbon/epoxy and glass/epoxy composite patches. The crack geometries correspond to different relative depths from 0.4 to 0.8. The results showed that the use of composite patches significantly decreased the stress intensity factors, and this reduction in the external circumferential cracks is more than the internal ones. Also, in the research process, the effect of the patch thickness, the angle of the fiber and the adhesive material on the stress intensity factors has been investigated.

کلیدواژه‌ها [English]

  • Fully circumferential crack (internal and external)
  • Stress intensity factor
  • Composite patch
  • Repair
  • The Finite element
  • Cylindrical pipe
[1] Ghaffari, M.A. and Hosseini Toudeshky, H. (2013). Fatigue Crack Propagation Analysis of Repaired Pipes with Composite Patch under Cyclic Pressure. Journal of Pressure Vessel Technology, Vol. 135, pp. 1-9.
[2] Meriem-Benziane, M. Abdul-Wahab, S.A. Merah, N. and Babaziane, B. (2014). Numerical analysis of the performances of bonded composite repair with adhesive band in pipeline API X65. Advanced Materials Research, Vol. 875-877, pp. 1101-1105.
[3] Benziane, M.M. Abdul-Wahab, S.A. Zahloul, H. Babaziane, B. Hadj-Meliani, M. and Pluvinage, G. (2015). Finite Element Analysis of the Integrity of an API X65 Pipeline with a Longitudinal Crack Repaired with Single- and Double-Bonded Composites. Composites Part B: Engineering, Vol. 77, pp. 431-439.
[4] Duell, J.M. Wilson, J.M. and Kessler, M.R. (2008). Analysis of a Carbon Composite Overwrap Pipeline Repair System. International Journal of Pressure Vessels and Piping, Vol. 85, pp. 782-788.
[5] Chan, P.H. Tshai, K.Y. Johnson, M. and Li, S. (2015). The Flexural Properties of Composite Repaired Pipeline: Numerical Simulation and Experimental Validation. Composite Structures, Vol. 133, pp. 312-321.
[6] Shokrieh, M.M. Taheri Behrooz, F. and Moslemian, R. (2005). Reinforcement of Corroded Gas Pipes using Composite Materials. In: 13th annual (international) conference on Mechanical Engineering. Isfahan: Isfahan university of technology (in Persian).
[7] Woo, K.S. Ahn, J.S. and Yang, S.H. (2016). Cylindrical Discrete-Layer Model for Analysis of Circumferential Cracked Pipes with Externally Bonded Composite Materials. Composite Structures, Vol. 143, pp. 317-323.
[8] Lam, C.C. Cheng, J.J. and Yam, C.H. (2011). Finite Element Study of Cracked Steel Circular Tube Repaired by FRP Patching. In: The Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction - EASEC12, Vol. 14, pp. 1106-1113.
[9] Zarrinzadeh, H. Kabir, M.Z. and Deylami, A. (2017). Crack Growth and Debonding Analysis of an Aluminum Pipe Repaired by Composite Patch under Fatigue Loading. Thin-Walled Structures, Vol. 112, pp. 140-148.
[10] Zarrinzadeh, H. Kabir, M.Z. and Deylami, A. (2017). Experimental and Numerical Fatigue Crack Growth of an Aluminium Pipe Repaired by Composite Patch. Engineering Structures, Vol. 133, pp. 24-32.
[11] Lyapin, A.A. Chebakov, M.I. Dumitrescu, A. and Zecheru, G. (2015). Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material. Mechanics of Composite Materials, Vol. 51, pp. 333-340.
[12] Lukács, J. Nagy, G. Török, I. Égert, J. and Pere, B. (2010). Experimental and Numerical Investigations of External Reinforced Damaged Pipelines. Procedia Engineering, Vol. 2, pp. 1191-1200.
[13] Shouman, A. and Taheri, F. (2011). Compressive Strain Limits of Composite Repaired Pipelines under Combined Loading States. Composite Structures, Vol. 93, pp. 1538-1548.
[14] Chen, J. and Pan, H. (2013). Stress Intensity Factor of Semi-Elliptical Surface Crack in a Cylinder with Hoop wrapped Composite Layer. International Journal of Pressure Vessels and Piping, Vol. 110, pp. 77-81.
[15] Fakoor, M. Ghorieshi, S.M.N. and Mehri-khansari, N. (2016). Investigation of Composite Coating Effectiveness on Stress Intensity Factors of Cracked Composite Pressure Vessels. Journal of Mechanical Science and Technology, Vol. 30, pp. 3119-3126.
[16] Jamal-Omidi, M. Falah, M. and Taherifar, D. (2014). 3-D Fracture Analysis of Cracked Aluminum Plates Repaired with Single and Double Composite Patches Using XFEM. Structural Engineering and Mechanics, Vol. 50, pp.525-539.
[17] Varfolomeyev, I.V. Petersilge, M. and Busch, M. (1998). Stress Intensity Factors for Internal Circumferential Cracks in Thin- and Thick-Walled Cylinders. Engineering Fracture Mechanics, Vol. 60, pp. 491-500.
[18] Ayatollahi, M.R. and Hashemi, R. (2007). Computation of stress intensity factors (KI, KII) and T-stress for cracks reinforced by composite patching. Composite Structures, Vol. 78, pp. 602-609.