بررسی متغیرهای ضریب تضعیف خطی و مقاومت فشاری بتن سنگین با سنگدانه ی باریتی حاوی پودر بیسموت و پودر میکروسیلیس در برابر اشعه گاما

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده

در ساخت بتن سنگین به جاى سنگدانه معمولی از سنگدانه های سنگین یا خرده هاى فولاد، چدن و یا سرب استفاده مى‌‌شود؛ کاربرد اینگونه بتن برای جلوگیرى از تشعشع اشعه هایی مانند ایکس و گاما می‌باشد؛ اصولاً از این نوع بتن در سازه هاى مربوط به تأسیسات اتمى و بیمارستانها استفاده مى‌شود؛ بتن سنگین، بتنى است که اساساً داراى وزن مخصوص بزرگترى نسبت به بتن هاى ساخته شده با سنگدانه هاى معمولى مى‌باشد؛ بتن سنگین معمولاً با استفاده از سنگدانه هاى سنگین وزن تهیه می‌گردد و به طور ویژه به عنوان سپر محافظ در مقابل تشعشع به کار مى‌رود؛ وزن مخصوص بتن سنگین حدود 5/1 تا 5/2 برابر وزن مخصوص بتن معمولى است. در این مقاله هدف، بررسی متغیر ضریب تضعیف خطی و مقاومت فشاری نمونه های مکعبی ساخته شده از بتن سنگین، با ترکیبات سنگدانه معمولی ،سنگدانه باریت ،پودر فلز بیسموت، پودر میکروسیلیس و افزودنی فوق روان کننده بتن و مقایسه نتایج بدست آمده این نمونه ها با نمونه ی شاهد ساخته شده است. نتایج نشان می‌دهند که متغیر ضریب تضعیف خطی نمونه های بتنی ساخته شده، مربوط به اشعه گامای چشمه ی سزیم137، رابطه ی مستقیم با درصد ترکیبات استفاده شده در ساخت نمونه ها، یعنی درصد سنگدانه معمولی، سنگدانه باریت، فلز بیسموت و پودر میکروسیلیس دارد، اما در مورد متغیر مقاومت فشاری بتن اینگونه نیست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the linear attenuation coefficient and compression strength parameters of heavy concrete with barite aggregates containing bismuth powder and microsilica powder against gamma rays

نویسندگان [English]

  • Ashkan Sohrabi
  • Reza Farokhzad
Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
چکیده [English]

In the production of heavy concrete, instead of typical aggregates, heavy aggregates or steel spalls, cast iron or lead is used; The use of such concrete is to prevent the emission of radiation such as X and gamma; Basically, this kind of concrete is used in structures related to nuclear facilities, and hospitals; Heavy concrete, is a concrete that has a substantially higher specific gravity than concrete with typical aggregates; Heavy concrete is usually produced using heavy weight aggregates and is especially used as a protective shield against radiation; The specific gravity of heavy concrete is about 1.5 to 2.5 times the typical concrete weight. The aim of this paper is to investigate the linear attenuation coefficient and compressive strength parameters of cube samples made from heavy concrete, with typical aggregate, barite aggregate, bismuth powder, microsilica powder, and concrete super-lubricant additive compounds; and compare the results of these samples with built control sample result. The results show that the linear attenuation coefficient parameter of built concrete samples, relates to cesium 137 gamma rays, directly correlates with the percentage of compounds used in the manufacture of samples, ie, the percentage of typical aggregate, barite aggregate, bismuth metal and microsilica powder, but this is not the case with the compressive strength parameter of concrete.

کلیدواژه‌ها [English]

  • Heavy concrete
  • Linear attenuation coefficient
  • Compressive strength
  • Gamma ray
  • Barite aggregate
[1] Gencel O., Brostow W., Ozel C., Filiz M. (2009). An investigation on the concrete properties containing colemanite. International Journal of Physical Sciences, Volume 5 (3), Pages 216-225.
[2] Yilmaz E., Baltas H., Kiris E, Ustabas I., Cevik U., El-Khayatt A.M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Annals of Nuclear Energy, Volume 38 (10), Pages 220-224.
[3] Rezaei-Ochbelagh D., Azimkhani S., Gasemzadeh Mosavinejad H. (2011) Effect of gamma and lead as an additive material on the resistance and strength of concrete. Nuclear Engineering and Design, Volume 241 (6), Pages 2359-2363.
[4] Mostofinejad D., Reisi M., Shirani A. (2012). Mix design effective parameters on γ-ray attenuation coefficient and strength of normal and heavyweight concrete, J.Construction and Building Materials, Volume 28, Pages 224-229.
[5] Rezaei-Ochbelagh D., Azimkhani S. (2012). Investigation of gamma-ray shielding properties of concrete containing different percentages of lead. Applied Radiation and Isotopes, Volume 70 (10), Pages 2282-2286.
[6] Gencel O., Bozkurt A., Kam E., Korkut T. (2011). Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Annals of Nuclear Energy, Volume 38 (12), Pages 2719-2723.
[7] Demir F., Budak G., Shahin R., Karabulut A., Oltulu M., Un A. (2011). Determination of radiation attenuation coefficients of heavyweight- and normal-weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, Volume 38 (6), Pages 1274-1278.
[8] Building and housing research, C., (2011). A guide to the preparation of concrete mix designs according to the Iranian concrete regulations, the national regulations of Iran (Chapter 9), the general technical specifications of construction works and roads (Journal No. 55 and 101). Tehran: Publication of Building and Housing Research Center, Pages 32-40.
[9] Shah-Nazari, M.R. (2007). Concrete laboratory guidelines according to ASTM regulations. Eighth edition.Tehran: Science and Technology Publishing House 110, Pages 15-60.
[10] Akkurt I., Akyildirim H., Mavi B., Kilincarslan S., Basyigit C. (2010). Gamma-ray shielding properties of concrete including barite at different energies. Progress in Nuclear Energy, Volume 52 (7), Pages 620-623.
[11] Demir F., Budak G., Shahin R., Karabulut A., Oltulu M., Serifoglu K., Un A. (2010). Radiation transmission of heavyweight and normal-weight concretes containing colemanite 6 MV and 18 MV X-rays using linear accelerator. Annals of Nuclear Energy, Volume 37 (3), Pages 339-344.
[12] Damla, N., Cevik, U.,Kobya, A.I., Celik, A. (2010). Radiation dose estimation and mass attenuation coefficients of concrete includes barite in different rate. Annals of Nuclear Energy, Volume 37, Pages 644-649.
[13] Bashter I.I. (1993). Fast-neutron flux distributin in ducted light and heavy concrete shields. Annals of Nuclear Energy, Volume 20 (8), Pages 547-552.
[14] Salavatiha, A., Delnavaz A. (2015). The effect of barite aggregate on concrete strength and gamma ray passage rate. In: National Conference on Civil and Environmental Engineering. Qazvin: Research Deputy of Faculty of Civil Engineering and Mapping, Islamic Azad University of Qazvin, Pages 4-8.
[15] Najm-Abadi, F. (2012). Radiation physics and radiology. Tehran: Jahad University Press, Allameh Tabatabaei University, Pages 20-26.
[16] Farokhzad, R., Mahdikhani, M., Bagheri, A., & Baghdadi, J. (2016). Representing a logical grading zone for self-consolidating concrete. Construction and Building Materials, 115, 735-745.
[17] FAROKHZAD, R., YASERI, S., ENTEZARIAN, M. H., & YAVARI, A. (2016). Investigating Effects of Sulfates on Compressive Strength of Different Types of Pozzolan Concrete and Measuring Penetration Rate by Ultrasound Tests at Different Ages.