بررسی اثر میرایی هیسترتیک آلیاژهای هوشمند بر عملکرد لرزه ای میراگر جرمی تنظیم شده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

2 استاد، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

میراگر جرمی تنظیم شده ابزاری رایج در کنترل غیرفعال است که در بسیاری از سازه ها مورد استفاده قرار گرفته است. با این حال، با تمام ویژگی‌های مناسبی که در این میراگر وجود دارد، مهمترین محدودیت عملکردی آن، ضعف در برابر تحریک‌های با محتوای فرکانسی بالا است. روش‌های مختلفی برای غلبه بر این مشکل پیشنهاد شده‌اند که در میان آنها استفاده از میرایی هیسترتیک مصالح با رفتار غیرخطی به عنوان یک روش موثر شناخته شده است. در میان مصالح با رفتار غیرخطی آلیاژهای حافظه شکلی دارای ویژگی‌های مناسب و حلقه‌های رفتاری هیسترزیس وسیع هستند. از این رو در این مقاله با استفاده ازسختی غیرخطی و میرایی هیسترتیک یک فنر از جنس آلیاژ حافظه شکلی، سختی خطی و میرایی ویسکوز میراگرهای جرمی رایج جایگزین می‌شوند. سپس میراگر جرمی تغییر یافته برای کنترل پاسخ‌های سازه‌های یک‌درجه آزادی تحت تحریک هارمونیک مورد استفاده قرار گرفته و اثر دامنه بارگذاری بر کنترل پاسخ‌های سازه‌ای تعیین می‌شود. پس از آن میراگر برای کنترل پاسخ‌های لرزه‌ای سازه‌های یک‌درجه آزادی به کار می‌رود تا عملکرد آن تحت تاثیر بارگذاری‌های لرزه‌ای دارای محتوای فرکانسی بالا با عملکرد میراگرهای جرمی معمول مقایسه گردد. نتایج این تحلیل‌ها نشان می دهند که ویژگی‌های آلیاژهای حافظه شکلی می‌توانند به نحو قابل قبولی تاثیر دامنه بارگذاری را بر عملکرد میراگر جرمی غیرخطی کنترل نمایند. همچنین حضور میرایی هیسترتیک می‌تواند به میزان قابل ملاحظه‌ای کنترل پاسخ‌های لرزه‌ای سازه-های یک‌درجه آزادی را نسبت به میراگرهای جرمی معمول بهبود بخشد به شرطی که ویژگی‌های دینامیکی میراگر غیرخطی مقادیر بهینه خود را اختیار کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of effects of hysteretic damping of shape memory alloys on seismic performance of tuned mass damper

نویسندگان [English]

  • Mahdi Kiani 1
  • Javad Vaseghi Amiri 2
1 Department of civil engineering, Babol Noshirvani university of technology, Babol, Iran.
2 Professor, Faculty of Civil Engineering, Babol Noshirvani University of technology, Babol, Iran
چکیده [English]

Tuned mass damper is a common tool in passive control, which is used in many structures. However, with all the proper features, its most important functional limitation is the weakness against broad band excitation. Various methods have been proposed to overcome this problem, among which using hysteretic damping of materials with nonlinear behavior is known effective. Among materials with nonlinear behavior, shape memory alloys have good features and large hysteresis loops. Hence, in this paper, using nonlinear stiffness and hysteretic damping of a shape memory alloy spring, linear stiffness and viscous damping of a common tuned mass damper are replaced. Then, the modified damper has been used to control responses of a single degree of freedom structure under harmonic loadings and the effect of the loading amplitude on the control of the structural responses was determined. Subsequently, the damper has been used to control seismic responses of single degree of freedom structures to compare its performance under broad band seismic loadings with the performance of conventional tuned mass dampers. Results of the analyses show that the characteristics of shape memory alloys can adequately control the impact of the loading amplitude on the performance of nonlinear mass dampers. Also, the presence of hysteretic damping can significantly improve control of seismic responses of single degree degrees of freedom structures compared to conventional tuned mass dampers, provided that dynamic properties of the nonlinear mass damper take their optimal values.

کلیدواژه‌ها [English]

  • Tuned mass damper
  • Shape memory alloy
  • Hysteretic damping
  • optimization
  • Seismic Performance
[1]Bekdas, G. and Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony search.Engineering Structures, 33, 16–23.
[2]Mohebbi, M. and Joghattai, A. (2012). Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms.Structural Design of Tall and Special Buildings, 21, 57–76.
[3]Soheili, S. and Farshidianfar, A. (2013). Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction.Soil Dynamics and Earthquake Engineering, 51, 14–22. [4] Özsariyildiz S. S. and Bozer A. (2015). Finding optimal parameters of tuned mass dampers. The Structural Design of Tall and Special Buildings, 24(6), 461-475.
[5] Bekdas, G. and Nigdeli, S. M. (2017).Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 92, 443-462.
[6]Casciati, F. and Giulani, F. (2009). Performance of multi-TMD in the towers of suspension bridges.Journal of Vibration and Control, 15,821–47.
[7]Rahman, M. S., HassanM. K. and Chung,S. (2017). Adaptive multiple tuned mass dampers based on modal parameters for earthquake response reduction in multi-story buildings. Advances in Structural Engineering, 20(9), 1375–1389. [8]Li, C. and Cao,B. (2015). Hybrid active tuned mass dampers for structures under the ground acceleration. Structural Control and Health Monitoring, 22(4), 757–773.
[9]Sun,C. andNagarajaiah, S.(2014). Study on semi-active tuned mass damper with variable dampingand stiffness under seismic excitations.Structural Control and Health Monitoring, 21, 890–906.
[10] Lacarbonara, W. and Vestroni, F. (2002). Feasibility of a vibration absorber based on hysteresis. Proceedings of the Third World Congress on Structural Control, Como, Italy.
[11] Rudinger, F. (2006). Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation.Journal of Engineering Mechanics, ASCE, 132, 46–53.
[12] Chung, L., Wu, L., Huang, H. H., Chang, C. H. and Lien, K. H. (2009). Optimal design theories of tuned mass damper with nonlinear viscous damping.Earthquake Engineering and Engineering Vibration, 8,547–60.
[13]Eason, R.P., Sun, C., Dick, A.J. and Nagarajaiah,S. Attenuation of a linear oscillator using a nonlinear and a semi-active tuned mass damper in series. Journal of Sound and Vibration, 332(1), 154-166.
[14]Bhowmick, S. and Mishra, S. K. (2014). Shape Memory Alloy-Tuned Mass Damper (SMA-TMD) for Seismic Vibration Control.Advances in Structural Engineering, DOI: 10.1007978-81-322-2193-7_108.
[15] Huang, Haoyu., Chang, Wen-Shao. and Mosalam, Khalid. M. (2016). Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in-service vibration.Structural Control and Health monitoring, DOI: 10.1002/stc.1858.
[16] Sarawate,N. N. and Dapino, M. J. (2009). Dynamic sensing behavior of ferromagnetic shape memory Ni–Mn–Ga.Smart Material and Structures, 18(10), 104014(6pp).
[17] Savi, M. A., Paula, A. S. D.and Lagoudas, D. C. (2011). Numerical Investigation of an Adaptive Vibration Absorber Using Shape Memory Alloys. Journal of Intelligent Material Systems and Structures, 22(1), 67-80.
[18] Jose. S,, Chakraborty, G. and Bhattacharyya, R. (2017). Coupled thermo-mechanical analysis of a vibration isolator made of shape memory alloy.International Journal of Solids and Structures, DOI: 10.1016/j.ijsolstr.2017.03.001.
[19] Nayefeh, A. H. and Mook, D. T. (1995). Nonlinear oscillations, New York, John Willey & Sons, Inc.
[20] Gendelman, O., Gourdon, E. and Lamarque, C. (2006). Quasi-periodic energy pumping in coupled oscillators under periodic forcing.Journal of Sound and Vibration, 294 (4–5), 651–662.
[21] Starosvetsky. Y, and Gendelman, O. (2009). Vibration absorption in systems with a nonlinear energy sink, nonlinear damping.Journal of Sound and Vibration, 324(3–5), 916–939.
[22] Sun, C., Eason, R. P., Nagarajaiah, S. and Dick, A. J. (2013). Hardening Duffing oscillator attenuation using a nonlinear TMD, a semi-active TMD and multiple TMD.Journal of Sound and Vibration, 332, 674–686.
[23] Carpineto, N., Lacarbonara, W. and Vestroni, F. (2014). Hysteretic tuned mass dampers for structural vibration mitigation.Journal of Sound and Vibration, 333(5), 1302-1318.
[24] Ozbulut, O. E., Hurlebaus, S. and Desroches, R. (2011). Seismic Response Control Using Shape Memory Alloys, A Review.Journal of Intelligent Material Systems and Structures, 22, 1531-1549.
[25] Graesser, E. J. and Cozzarelli, F. A. (1994). A proposed three-dimensional constitutive model for shape memory alloys.Journal of Intelligent Material Systems and Structures, 5, 78–89.
[26] Wen, Y. K. (1980). Equivalent linearization for hysteretic systemsunder random excitation. Journal of Applied Mechanics, 47, 150–154.
[27]Dolce, M. and Cardone, D. (2001). Mechanical behavior of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension.International Journal of Mechanical Sciences, 43:2657–2677.
[28] Motahari, S. A. and Ghassemieh, M. (2007). Multilinear one-dimensional shape memory material model for use in structural engineering applications. Engineering Structures, 29: 904–913.
[29]Chopra, A. K. (2007). Dynamics of structures Theory and Applications to Earthquake Engineering, 3d Edition.New York, prentice Hall
[30]MATLAB and Statistics Toolbox (2012), the Math Works, Inc., Natick, Massachusetts, United States.
[31] Lacarbonara, W. and Vestroni, F. (2003). Nonclassical responses of oscillators with hysteresis.Nonlinear Dynamics, 32:235–258.
[32]Dhooge, A., Govaerts, W. and Kuznetsov, Y. A. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transaction of Mathematical Software, 29, 141–164.
[33]Federal Emergency Management Agency (FEMA) (2005). Improvement of nonlinear static seismic analysis procedure. Report FEMA 440, Washington, DC.