بررسی تطبیقی آیین نامه های متداول طراحی با دستورالعمل های بهسازی لرزه ای در ارزیابی عملکرد قاب های خمشی فولادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز، شیراز، ایران

2 دانشیار، دانشکده عمران و محیط زیست، دانشگاه صنعتی شیراز، شیراز، ایران

3 دانشجوی کارشناسی ارشد زلزله، دانشگاه صنعتی شیراز

4 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز، شیراز، ایران

چکیده

با توجه به گسترش استفاده از دستورالعمل های بهسازی لرزه ای برای ارزیابی سطح عملکرد ساختمان های موجود در سراسر جهان و همچنین اشاره به استفاده از تحلیل های غیرخطی در طراحی سازه های جدید در ویرایش های جدید آیین نامه های طراحی لرزه ای برخی از کشورها، بحث تطبیق این مدارک با یکدیگر از اهمیت ویژه ای برخوردار است. با توجه به معرفی چهار روش مختلف تحلیل در دستورالعمل بهسازی لرزه ای ساختمان های موجود (نشریه 360)، سازگاری این روش ها نیز در تعیین سطح عملکرد ساختمان های موجود قابل بررسی است. از این رو در این تحقیق در راستای پاسخ به دو سوال فوق در ساختمان های با سیستم باربر قاب خمشی فولادی، عملکرد لرزه ای سه ساختمان فولادی با پلان مشابه شکل پذیری ویژه و متوسط که با استفاده از آیین نامه های رایج طراحی سازه های فولادی (مبحث دهم مقررات ملی ساختمان) طراحی شده بودند، با استفاده از چهار روش تحلیل پیشنهادی در نشریه 360 مورد ارزیابی قرار گرفت. نتایج حاصل از این تحقیق نشان می دهد که به طور کلی نشریه 360 نسبت به آیین نامه های مرسوم طراحی سازه های فولادی مانند مبحث دهم مقررات ملی ساختمان، برای سازه ساختمان های جدید منجر به مقاطع سبک تری می شود. به عبارت دیگر آیین نامه های طراحی لرزه ای نسبت به آیین نامه های بهسازی دارای ضوابط سختگیرانه تری می باشند. این امر می تواند به دلیل کنترل معیار تغییرشکل نسبی جانبی طبقات در آیین نامه های طراحی ساختمان های جدید یا دیگر کنترل های مضاعف لازم باشد که در ساختمان های فولادی با قاب خمشی کنترل کننده طرح هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Match Compliance of Conventional Design Codes with Instructions for Seismic Rehabilitation of Buildings in Performance Evaluation of Steel Moment Frames

نویسندگان [English]

  • M. A. Najafgholipour 1
  • M.A. Hadianfard 2
  • sh malekjamshidi 3
  • Seyed Mehdi Dehghan 4
1 Assistant Professor, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
2 Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
3 Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
4 ِDepartment of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

Today, instructions for seismic rehabilitation of existing buildings are widely used for seismic performance evaluation of existing buildings. Moreover, nonlinear structural analysis methods are permitted for seismic design of new buildings in recent versions of seismic design codes in some countries, such as Iran. Therefore, match compliance of conventional design codes with instructions for seismic rehabilitation of existing buildings is of great importance. On the other hand, four different analysis methods are available in seismic rehabilitation instructions that compatibility of these analysis techniques can be evaluated. In this regard, seismic performance of three buildings with steel moment frames as lateral load resisting system with 4, 8 and 12 stories that were designed previously according to conventional seismic design codes with two levels of ductility (Intermediate and Special) were evaluated using seismic vulnerability assessment instruction in Iran (Code No. 360) by means of four analysis procedures. Analysis results indicate that conventional seismic design codes are more conservative than Code No. 360. In other words, design of steel moment frames with conventional design codes leads to stronger beams and columns. This phenomenon can be due to controlling lateral interstory drift and weak beam-strong column criterion in moment frames that control final design of these structures.

کلیدواژه‌ها [English]

  • Steel moment frame
  • Seismic Performance
  • Seismic Design
  • Nonlinear analysis
  • Linear analysis
[1] Federal Emergency Management Agency (FEMA), (2000). Prestandard and commentary for the seismic rehabilitation of buildings (FEMA 356). Washington, D.C.
[2] American Society of Civil Engineers (ASCE), (2013). Seismic Evalautation and Retrofit of Existing Buildings (ASCE 41). Reston, Virginia.
[3] New Zealand Society of Earthquake Engineering (NZSEE), (2017). The Seismic Assessment of Existing Buildings.
[4] Vice Presidency for Strategic Planning and Supervision, (2014). Instruction for Seismic Rehabilitation of Existing Buildings (Code No. 360). Tehran, Iran.
[5] Road, Housing and Urban Developenment Research Center (BHRC), (2015). Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard 2800). Tehran, Iran.
[6] Galındez, N. and Thomson, P. (2007). Performance of steel moment-frame buildings designed according to the Colombian code NSR-98. Engineering Structures, 29, 2274-2281.
[7] Malekpour, S., Seyyedi, P., Dashti, F. and Asghari, F. (2011). Seismic Performance Evaluation of Steel Moment-Resisting Frames Using Iranian, European and Japanese Seismic Codes. Procedia Engineering, 14, 3331-3337.
[8] Behnamfar, F. and Dastan Mirak, H. (2015). A procedure for harmonizing design based on Standard 2800 and seismic evaluation of document 360. In: 7th International conference on seismology and earthquake engineering (SEE7). Tehran.
[9] Speicher, M.S. and Harris III, J.L. (2015). Assessment of First Generation Performance-Based Seismic Design Methods for New Steel Buildings, Vol1: Special moment frames, National Institute of Standards and Technology (NIST), Tehran, Iran.
[10] Speicher, M.S. and Harris III, J.L. (2016). Collapse Prevention seismic performance assessment of new eccentrically braced frames using ASCE 41. Engineering Structures, 117, 344-357.
[11] Speicher, M.S. and Harris III, J.L. (2016). Collapse Prevention seismic performance assessment of new concentrically braced frames using ASCE 41. Engineering Structures, 126, 652-666.
[12] Ghanbari, A.R. and Jalali, A.R. (2012). Seismic evaluation of low-rise, mid-rise and tall steel buildings based on performance based design. In: The First Regional Conference of Civil Engineering with Sustainable Development Approach. Sari, Iran.
[13] Eskandari, M. and Sherafat, M.H. (2014). Seismic performance evaluation of steel moment frames using different analysis methods. In: Fifth National Conference of Steel and Structures. Tehran, Iran.
[14] Barkhordari, M.A. and Ghaffari, F. (2014). Performance evaluatation of moment resisting and concentrically braced steel frames. In: 15th Conference of Civil Engineering Students. Oroumie, Iran.
[15] Mosleh, A., Rodrigues, H., Varum, H., Costa, A. and Arêde, A. (2016). Seismic behavior of RC building structures designed according to current codes. Structures, 7, 1-13.
[16] Nemati, H. and Jalali, A.R. (2016). Performance evaluation RC structures designed based on Iranian National Building Code. In: Second International Conference on Civil Engineering, Architechture and Urban Economy Development. Shiraz, Iran.
[17] Nemati, H. and Jalali, A.R. (2016). Seismic evaluation of low-rise, mid-rise and tall RC buildings based on performance based design. In: Third Conference of Engineering Scince Development. Shiraz, Iran.
[18] Özhendekci, D. and Özhendekci, N. (2012). Seismic performance of steel special moment resisting frames with different span arrangements. Journal of Constructional Steel Research, 72, 51-60.
[19] Flores, F., Charney, F. and Lopez-Garcia, D. (2016). The influence of gravity column continuity on the seismic performance of special steel moment frame structures. Journal of Constructional Steel Research, 118, 217-230.
[20] Ferraioli, M., Lavino, A. and Mandara, A. (2014). Behaviour Factor of Code-Designed Steel Moment-Resisting Frames. International Journal of Steel Structures, 14(2), 243-254.
[21] Pirizadeh, M. and Shakib, H. (2013). Probabilistic seismic performance evaluation of non-geometric vertically irregular steel buildings. Journal of Constructional Steel Research, 82, 88-98.
[22] Celarec, D. and Dolšek, M. (2013). The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings. Engineering Structures, 52, 340-354.
[23] Asgarian, B. and Ordoubadi, B. (2016). Effects of structural uncertainties on seismic performance of steel moment resisting frames. Journal of Constructional Steel Research, 120, 132-142.
[24] Road, Housing and Urban Developenment Research Center (BHRC), (2013). National Building Code: No. 10: Design and construction of steel buildings. Tehran, Iran.
[25] Road, Housing and Urban Developenment Research Center (BHRC), (2013). National Building Code: No. 6: Applied Loads on buildings. Tehran, Iran.