بررسی تاثیر آپلیفت برآسیب لرزه‌ای سد بتنی وزنی در زلزله‌های حوزه دور ونزدیک: مطالعه موردی سد شفارود

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه آب - سازه های هیدرولیکی ، دانشکده مهندسی عمران ، دانشگاه تبریز، تبریز، ایران

2 گروه آب- سازه های هیدرولیکی ، دانشکده مهندسی عمران ، دانشگاه تبریز

چکیده

در مقاله حاضرتاثیرنیروی آپلیفت (زیرفشار) برپاسخ دینامیکی غیرخطی سد بتنی وزنی تحت زمین زلزله‌های حوزه نزدیک و حوزه دور از گسل با استفاده مدل عددی مورد مطالعه قرار گرفته است.با توجه به اینکه نیروی فشار آپلیفت به عنوان یکی از بارگذاری‌های تاثیرگذار برپایداری سدهای بتنی وزنی همواره مطرح می‌باشد، لذا درمطالعه حاضر تاثیر این نوع بارگذاری در شرایط مختلف با فرض سه نوع توزیع محتمل بررسی شده است. همچنین جهت بررسی دقیق‌تر موضوع شتاب‌نگاشت‌های حوزه نزدیک و دور در سه، زلزله متفاوت بر سازه سیستم سد -مخزن -فونداسیون اعمال گردیده است. مدل خرابی پلاستیک بتن(CDP) که شامل رفتار سخت شوندگی و نرم شوندگی کرنشی بتن می‌باشد در تحلیل دینامیکی غیرخطی بکار رفته است. بعنوان مطالعه موردی تحلیل دینامیکی غیرخطی و آنالیز خرابی لرزه‌ای سد بتنی وزنی شفارود واقع در استان گلستان تحت زمین لرزه‌های حوزه دور و نزدیک باهمراه لحاظ اثرات نیروی زیرفشار مورد ارزیابی قرار گرفته است. اندیس خرابی کلی بعنوان یکی از پارامترهای پاسخ لرزه‌ای سد مورد بررسی ارائه گردیده است. نتایج بدست آمده از تحلیل سد بتنی وزنی تحت تاثیر هر یک از زمین لرزه‌های حوزه نزدیک و دور به همراه سه توزیع متفاوت نیروی آپلیفت مقایسه شده بطوریکه نتایج بدست آمده از تحلیل حاکی از تاثیر نسبی نیروی آپلیفت در زمین لرزه‌های حوزه نزدیک بر رفتار دینامیکی سد بتنی وزنی می‌باشد بطوریکه در این شرایط تخریب بدنه سد بطورنسبی افزایش می‌یاید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Uplift force effects on Seismic Damage of Concrete Gravity Dam in the Near-Fault and Far-Fault Ground Motions:Case Study Shafaroud Dam

نویسندگان [English]

  • Farhoud Kalateh 1
  • Amir Ghamatloo 2
1 Civil Engineering Department, University of Tabriz, Tabriz-Iran
2 Civil Engineering Department, University of Tabriz, Trabriz-Iran
چکیده [English]

Uplift force has significant role on dynamic response of concrete gravity dams and also seismic response of dams in near field motion can be considerably different from those observed in the far field and the near –fault ground motions can cause considerable damage during an earthquake. This paper presents results of study aimed at evaluating the uplift force effects in the near-fault and far-fault ground motions on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 3 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The Shafaroud gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records and three different distribution of uplift force are assumed. The results obtained from the analysis of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the uplift force, which has influence on the dynamic response of concrete gravity dam-reservoir-foundation systems subjected to near-fault ground motion, as has the potential to increase damage in the dam body but at far-fault motion uplift force can be neglected.

کلیدواژه‌ها [English]

  • Gravity dam
  • Uplift force
  • Nonlinear dynamic analysis
  • Seismic damage
  • Near fault motion
  • Far fault motion
[1] MohammadiShoja, H.,Shokrollahi, B.,HajiRasooliha, A.,Kamalim, T. (1382). Investigation of the Dynamic Expansion crack and Earthquake breakdown in concrete gravity Dams.Fourth International Conference on Seismology and Earthquake Engineering, Tehran.Iran.
[2] NavaiiNia, B., Naseri, N., Kalani, L., VaseghiAmiri, G. (1393). Evaluation of Nonlinear Response of Concrete gravity Dams with Crack Modeling with rotary and fixed method. First National Congress on Structural Engineering of iran, Congress Center of the Olympic Hotel. Tehran. Iran.
[3]RahimzadehRofouii, F., Omidi, A. (1381). investigated of the effects of nonlinear behavior of concrete on the response of seismic concrete archdams.The first conference on safety and rehabilitation of structures, Amirkabir University of Technology. Tehran. Iran.
[4]Nezhadfard, H. (1391). The effect of cracking on the spectral response of arc concrete dams by finite element method, Master's thesis, Islamic Azad UniversityAhar Branch.
[5] MahmoudianS. M., SadeghiC.P. (1392).Dynamic Analysis of gravity Dams with Considering the Concrete cracking with the Finite Element Method, 7th National Congress on Civil Engineering, ShahidNikbakht Engineering univercity, Zahedan.(In Persian)
[6]Aghazadegan, A., Moradloo, j.(1391). Investigating the parameters of concrete failure model on nonlinear seismic response of arc concrete dams, second national new finding conference Civil Engineering, Islamic Azad University, Najaf Abad Branch, Najaf Abad.(In Persian)
[7] Jiang, SY., Du, CB. (2012). Seismic stability analysis of concrete gravity dams with penetrated cracks. Water Science and Engineering, 5(1), 105-119.
[8]Shi, M., Zhong, H., Ooi ET., ZhangC.,Song, C. (2013). Modelling of crack propagation of gravity dams by scaled boundary polygons and cohesive crack model. International Journal of Fracture, 183(1), 29-48.
[9] Oliveira, S., Gaspar, N., Dinis, P. (2006). Cracking Analysis in Concrete Dams using Isotropic Damage Models.Objectivity of Numerical Solutions.InIII European Conferenceon Computational Mechanics (pp.369-369).Springer Netherlands.
[10] Wepf, D H., Feltrin, G., Bachmann, H. (1993). Influence of time-domain dam–reservoir interaction on cracking of concrete gravity DAMS. Earthquake engineering structural dynamics, 22(7), 573-582.
[11] HajHosseini, J., Moradloo, j. (1393). Comparison of Near‐Filed and Far‐Filed Earthquakes on Nonlinear Response of Concrete gravity Dams, Journal of Civil and Environmental Engineering, Tabriz University Winter.
[12] kalata, F., Ghamatloo, A. (1396). Comparison of the massive and massless foundation on the nonlinear dynamic response of concrete gravity dam in terms of the interaction of dam, reservoir, foundation.International Conference on Civil Engineering, contemporary iranian architecture and urbanism ,ShahidBeheshti University. Tehran. Iran.
[13] Rescher, O. (1990). Importanceof cracking in concrete dams.EngngFractMech, 35(3):503-2
[14] Naeim,F.(2001). The Seismic Design Handbook, 2n edition, Kluwer Academic Publishers.
[15] Ghoprah,A. (2004). Response of Structuresto Near-Fault Ground Motion , 13thWorConf on Earth. Eng. 1-6:1031
[16] Somerville, P.(2000).Characterizationofnear field groundmotions.In:Proceedingsof the US–Japan workshop:effectsofnear-field earthquakeshaking.SanFran- cisco; March.
[17]Wilson,EL,Khalvati,M.(1983). Finiteelementsforthdynamicanalysisoffluid–solid systems.InternationalJournalforNumericalMethodsinEngineering, 19: 1657–68.
[18] Calayir,Y.,Dumanoglu AA.,(1993). Static and dynamic analysis of fluid and fluid-structure systems by the Lagrangian method, Computers and structures. 49(4):625–32.
[19] Çavdar, Ö. (2012). Probabilistic sensitivity analysis oftwosuspensionbridgesin Istanbul, Turkey to near-and far-fault ground motion. Natural Hazards and Earth System Sciences.12(2):459–73.
[20] Rofooeia, FR., Imani, BR., (2011). Evaluating the damage in steel MRF under near field earthquakes from a performance based design viewpoint. Procedia Engineering.14:3111–8.
[21] Clough, RW., Penzien, J. (1993). Dynamics of structures. 2nded.Singapore: McGraw-Hill Book Company.
[22] Akkas, N., Akay, HU.,Yilmaz, C.(1979).Applicability of general-purpose finite element programs in solid-fluid interaction problems Computers and Structures.10(5):773–83.
[23] Orozco, G., Ashford, SA. (2002). Effects of large pulses on reinforced concrete bridge columns., Report 2002/23., Berkeley :College of Engineering, University of California: Pacific Earthquake Engineering Research Center, PEER.
[24]Krajcinovic, D. (1984). Continuum damage mechanics, Applied MechanicsReviews.37(1):1–6
[25] Dragon, A., Mróz, Z. (1979). A continuum model for plastic-brittle behavior of rock and concrete. International Journal of Engineering Science,17(2):121–37.
[26] Murakami, S., Ohno, N.(1981). A continuum theory of creep and creep damage. In: Proceedings of the third iutam
symposium on creep in structures. Berlin, Springer. p. 422–444.
[27] Cervera, M., Oliver, J., Faria, R. (1995). Seismic evaluation of concrete dams via continuum damage models.
Earthquake Engineering and Structural Dynamics.24(9):1225–45.
[28] Hatzigeorgiou, G., Beskos, D., Theodorakopoulos , D., Sfakianakis, MA. (2001). simple concrete damage model for
dynamic FEM applications. International Journal of Computational Engineering Science.2:267–86.
[29] Lubliner, J., Oliver, J., Oller, S., Oñate, E. (1989). A plastic-damage model for concrete. International Journal of
Solids and Structures.25(3):299–326.
[30] Lee, J. ,Fenves, GL. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering
Mechanics.124(8):892–900.
[31] Zhang, Sh.,Wang, G.(2013). Effects of near-Fault and far-fault ground motions on nonlinear dynamic response and
seismic damage of concrete gravity dam. Soil dynamics and Earthquake engineering 53:217-229
[32] Bhattacharjee, SS., Lager, P. (1994).Application of NLFM models to predict c racking in concrete gravity dams.
Engineering ASCE 1994, 120, 1255-1271.
[33] Haddad, M. (1387). Investigating the Effect of CFRP on the Predictable Region of Plastic Joint Construction on the
Base of Reinforced Concrete Bridges under Uniform Loading, Fourteenth Civil Engineering Students Conference,
Semnan,5-7 September.
[34] Elenas, A.,Meskouris, K.(2001). Correlation study between seismic acceleration parameters and damage indices of
structures. Engineering Structures.23(6):698–704.
[35] Calvi, GM., Kingsley, GR.(1995). Displacement-based seismic design ofmulti-degree- of-freedom bridges structures.
Earthquake Engineering and Structural Dynamics.24(9):1247–66.
[36] Cosenza, E., Manfredi, G.(2000). Damage indices and damage measures. Progress in Structural Engineering and
Materials.2(1):50–9.
[37] Cosenza, E., Manfredi, G., Polese, M. (2009). A simplified method to include cumulative damage in the seismic
response of SDOF systems. Journal of Engineering Mechanics.135(10):1081–8.
[38] Kelly, A., Tyson, WR., Cottrell, AH. (1967). Ductile and brittle crystals. Philosophical Magazine.15(135):567–86.
[39] Park, YJ., Ang, AHS. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural
Engineering.111(4):722–39.
[40] Miner, MA. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics.12:159–64.
[41] Mavroeidis,GP.,Papageorgiou,AS. (2003). A mathematical representation of near-fault ground motions. Bulletin of the
Seismological Society of America.93 (3):1099–131.
[42] Lee, GC., Tsai, CS., (1991), Time domain analyses of dam-reservoir system, Eng. Mech, 1991, 117,1990-2006.
[43] Calayir,Y., Karaton, M. (2005). A continuum damage concrete model for earthquake analysis of concrete gravity
dam–reservoir systems. Journal Soil Dynamics and Earthquake Engineering.25:857–869.