کاربرد روش‏های تشخیص آماری الگو در شناسایی خرابی سازه‌ها در شرایط پیرامونی متفاوت

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران ، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، ایران

2 استاد، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

پایش سلامت سازه راهکاری اقتصادی و مطمئن به منظور ارزیابی شرایط سازه‌های زیر ساختی است. در سالهای اخیر محققان حوزه پایش سلامت سازه کوشیده‌اند که الگوریتم‌هایی به منظور تشخیص خرابی بر پایه روش‌ تشخیص آماری الگو ارائه دهند. مطالعات نشان می‌دهد که این الگوریتم‌ها می‌توانند به طور موفقیت‌آمیزی در شناسایی خرابی سازه‌ها مورد استفاده قرار گیرند. یکی از مسائلی که باید برای اعمال روش‌های تشخیص آماری الگو در کاربردهای عملی در نظر گرفت متغیر بودن شرایط محیطی و کاربری در هنگام ثبت داده‌ها است. در نظر گرفتن این موضوع برای اجتناب از تشخیص نادرست خرابی امری ضروری می‌باشد. این مقاله به بررسی کارایی روش‌های تشخیص آماری الگو به کمک تحلیل سری زمانی در شرایط پیرامونی متفاوت می‌پردازد. داده‌های حاصل از یک مطالعه آزمایشگاهی شامل سیستم هشت درجه آزادی جرم و فنر مورد استفاده قرار گرفته است. با تغییر ولتاژ سیگنال اعمالی، توانایی این روش‌ها در تشخیص خرابی در شرایط پیرامونی متفاوت مورد بحث قرار گرفته است. دو رویکرد پرکاربرد تشخیص آماری الگو شامل مدل اتورگرسیو (AR) به همراه استفاده از نمودار کنترل و یا فاصله ماهالانوبیس در تشخیص داده‌های پرت بررسی شده است. نتایج حاصل اهمیت بررسی توانایی روش‌های تشخیص آماری الگو در تشخیص درست خرابی سازه در شرایط محیطی و کاربری متفاوت در کاربردهای عملی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of statistical pattern recognition methods for structural damage detection under various ambient conditions

نویسندگان [English]

  • Fahimeh Jalalifar 1
  • mohammad Reza Esfahani 2
  • Farzad Shahabian 2
1 PhD student, Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
2 Ferdowsi University of Mashhad
چکیده [English]

Structural health monitoring is an economical and reliable strategy for infrastructure condition assessment. In recent years, researchers have tried to propose algorithms based on statistical pattern recognition techniques. Studies show these algorithms can be successfully used to detect structural damage. Variability of operational and ambient conditions during data acquisition should be considered as an important factor in applying statistical pattern recognition methods in practical applications. This paper studies the efficiency of statistical pattern recognition methods on the damage detection of structures under various operational and ambient conditions. The data is obtained from an experimental study on an eight degrees of freedom mass spring system. Ambient vibration is applied to the mass spring system using random excitation. In order to simulate various ambient conditions, the amplitude level of the input force has been varied. By applying the statistical pattern recognition methods, the ability of these methods to damage detection under various ambient conditions is discussed. Two common approaches of statistical pattern recognition are considered. These approaches are autoregressive model accompanied with using control chart and Mahalanobis distance for outlier analysis. Results show the importance of considering the statistical pattern recognition methods for structural damage detection under various operational and ambient conditions.

کلیدواژه‌ها [English]

  • Statistical pattern recognition
  • Structural damage detection
  • time history analysis
  • Control chart
  • Mahalanobis distance