ارزیابی آسیب پذیری لرزه ای دیوارهای برشی فولادی موج دار با استفاده از منحنی های شکنندگی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد، دانشکده مهندسی، گروه مهندسی عمران، مشهد، ایران

2 استاد دانشگاه فردوسی مشهد

چکیده

خسارت های سازه ای و به دنبال آن خسارت های مالی قابل توجهی که تا کنون در اثر وقوع زمین لرزه های مخرب به وجود آمده است، باعث شده تا محققان و آیین نامه ها به منظور طراحی لرزه ای سازه ها برای محدود کردن سطح خرابی آن ها به تدریج از رویکرد طراحی تجویزی به سمت طراحی بر اساس عملکرد حرکت کنند. تحلیل های شکنندگی لرزه ای یکی از مهمترین ابزارهای لازم در طراحی لرزه ای سازه ها بر اساس عملکرد به شمار می روند که منجر به تولید توابع و منحنی های شکنندگی می شوند. توابع شکنندگی ابزاری توانمند برای ارزیابی احتمالاتی آسیب پذیری لرزه ای سازه ها به شمار می روند. در این پژوهش با هدف ارزیابی آسیب پذیری لرزه ای دیوارهای برشی فولادی موج دار و به منظور مقایسه ی آسیب پذیری لرزه ای آن ها با دیوارهای برشی فولادی ساده، توابع شکنندگی گسترش یافته و منحنی های شکنندگی تولید شده اند. در این خصوص، اثر زاویه ی موج نیز در نمونه های موج دار مورد بررسی قرار گرفته است. تولید این منحنی ها از طریق انجام تحلیل های دینامیکی افزایشی میسر شده است. به این منظور از تغییرمکان بین طبقه ای به عنوان شاخص خسارت و از بیشینه شتاب زمین به عنوان شاخص شدت تحریک استفاده گردیده است. بررسی منحنی های تولید شده نشان می دهد که در نمونه های موج دار در شدت های پایین لرزه ای با افزایش زاویه ی موج، احتمال خرابی کاهش می یابد. این در حالی است که در شدت های بالای لرزه ای با افزایش زاویه ی موج، احتمال خرابی افزایش یافته است. از سوی دیگر، نتایج بیان گر رفتار لرزه ای مناسب تر نمونه های موج دار نسبت به نمونه ی ساده در شدت های پایین لرزه ای است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Vulnerability Assessment of Corruagted Steel Shear Walls Using Fragility Curves

نویسندگان [English]

  • Seyed Saeed Askariani 1
  • Farzad Shahabian 2
1 Ferdowsi University of Mashhad, Faculty of Engineering, Civil Engineering Department, Mashhad, Iran
2 Professor of Ferdowsi University of Mashhad
چکیده [English]

Structural damages and subsequently considerable economic losses that ever made in catastrophic seismic events caused reaserchers and codes gradually move from prescriptive design to performance-based design. Seismic fragility analyses are one of the most important tools in performance-based seismic design of structures that lead to production of fragility curves and functions. Fragility function is a capable tool for probabilistic assessment of the seismic vulnerability of the structures. In this study, in order to assess seismic vulnerability of corrugated steel shear walls and compare their seismic vulnerability with simple steel shear walls, fragility functions have been developed and fragility curves have been constructed. In this regard, the effect of the corrugation angle has been studied in corrugated models. Construction of these curves has became feasible through conducting incremental dynamic analyses. For this purpose, inter-story drift and peak ground acceleration have been used as damage measure and ground motion intensity measure, respectively. Assessment of resulted curves show that in low seismic intensity, probability of damage in corrugated models is reduced by increasing the corrugation angle; while, in high seismic intensity, probability of damage in corrugated models has been increased by increasing the corrugation angle. On the other hand, results indicate that corrugated models have more appropriate seismic performance than simple model in low seismic intensity.

کلیدواژه‌ها [English]

  • Fragility curve
  • Steel Shear Wall
  • Simple plate
  • Corrugated plate
  • Incremental Dynamic Analysis
[1] Papailia, A. (2010). Seismic fragility curves for reinforced concrete buildings. M.Sc. Thesis, University of Patras, Patras,
Greece.
[2] Sabouri-Ghomi, S. and Roberts, T. M. (1992). Nonlinear dynamic analysis of steel plate shear walls including shear and
bending deformations. Engineering Structures, 14(5), 309-317.
[3] Caccese, V., Elgaaly, M. and Chen, R. (1993). Experimental study of thin steel-plate shear walls under cyclic load.
Journal of Structural Engineering, 119(2), 573-587.
[4] Elgaaly, M., Caccese, V. and Du, C. (1993). Postbuckling behavior of steel-plate shear walls under cyclic loads. Journal
of Structural Engineering, 119(2), 588-605.
[5] Driver, R. G., Kulak, G. L., Kennedy, D. J. L. and Elwi, A. E. (1998). Cyclic test of four-story steel plate shear wall.
Journal of Structural Engineering, 124(2), 112-120.
[6] Berman, J. W. and Bruneau, M. (2003). Plastic analysis and design of steel plate shear walls. Journal of Structural
Engineering, 129(11), 1448-1456.
[7] Farzampour, A. and Laman, J. A. (2015). Behavior prediction of corrugated steel plate shear walls with openings.
Journal of Constructional Steel Research, 114, 258-268.
[8] Yadollahi, Y., Pakar, I. and Bayat, M. (2015). Evaluation and comparison of behavior of corrugated steel plate shear
walls. Latin American Journal of Solids and Structures, 12, 763-786.
[9] Emami, F. and Mofid, M. (2012). On the hysteretic behavior of trapezoidally corrugated steel plate shear walls. The
Structural Design of Tall and Special Buildings, 23(2), 94-104.
[10] Zhao, Q., Sun, J., Li, Y. and Li, Z. (2016). Cyclic analyses of corrugated steel plate shear walls. The Structural Design of Tall and Special Buildings.
[11] Kennedy, R.P., Cornell, A.C., Campbell, R.D., Kaplan, S. and Perla, H.F. (1980). Probabilistic seismic safety study of an existing nuclear power plant. Nuclear Engineering & Design, 59 (2).
[12] Murao, O. and Yamazaki, F. (2000). Development of fragility curves for buildings in Japan. Confronting Urban Earthquake. Report of Fundamental Research on the Mitigation of Urban Disasters Caused by Near-Field Earthquake, 226-230.
[13] Park, S. and Lindt, W. (2009). Formulation of seismic fragilities for a wood-frame building based on visually determined damage indexes. Journal of Performance of Constructed Facilities, 23(5), 346-352.
[14] Seyed Razaghi, M. (2006). Provide fragility curves for Oil cylindrical storage tanks. Ph.D. Thesis, International Institute of Earthquake Engineering and Seismology, Tehran, Iran, (in Persion).
[15] Aziminejad, A.S. and Moghadam, A. (2007). Effects of strength distribution on fragility curves of asymmetric single story building. Proceedings of the 9th Canadian Conference on Earthquake Engineering, Ottawa, Ontario, Canada.
[16] Hoseini, M. and Majd, M. (2010). Developing fragility curves for regular steel buildings with x-bracing using nonlinear dynamic analyses. Civil Engineering Sharif, 27.2(1), 3-13, (in Persion).
[17] Doosti, L., Ghodrati Amiri, Gh. and Razeghi, h. (2014). Produce fragility curves for masonry buildings. 8th National Congress on Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran, (in Persion).
[18] Baldvins, N. M., Berman, J. W., Lowes, L. N., Janes, T. M. and Low, N. A. (2012). Fragility Functions for Steel Plate Shear Walls. Earthquake Spectra, 28(2), 405-426.
[19] Zhang, J. and Zirakian, T. (2015). Probabilistic assessment of structures with SPSW systems and LYP steel infill plates using fragility function method", Engineering Structures, 85, 195-205.
[20] Gholipour, M. and Alinia, M. M. (2016). Behavior of multi-story code-designed steel plate Shear wall structures regarding bay width. Journal of Constructional Steel Research, 122, 40-56.
[21] Behbahanifard, M. R., Grondin, J. Y. and Elwi, A. E. (2003). Experimental and numerical investigation of steel plate shear wall. Structural Engineering, Report No. 254.
[22] Habashi, H. R. and Alinia, M. M. (2010). Characteristics of the wall-frame interaction in steel plate shear walls. Journal of Construction Steel Reasearch, 66, 150-158.
[23] Emami, F., Mofid, M. and Vafai, A. (2013). Experimental study on cyclic behavior of trapezoidally corrugated steel plate shear walls", Engineering Structures, 48, 750-762.
[24] FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency. Publication No. 356, Washington (DC).
[25] ASCE 7-10. (2010). Minimum Design Loads for Buildings and other Structures. American Society of Civil Engineers, Reston, Virginia, USA.
[26] Park, J., Towashiraporn, P., Craig, J. I. and Goodno, B. J. (2009). Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures, 31, 125-137.
[27] Banihashemi, M. R., Mirzagoltabar, A. R. and Tavakoli, H. R. (2015). Reliability and fragility curve assessment of steel concentrically braced frames. European Journal of Environmental and Civil Engineering, 1-23.
[28] Zhang, J., Huo, Y., Brandenberg, S. J. and Kashighandi, P. (2008). Effects of structural characterizations on fragility functions of bridges subject to seismic shaking and lateral spreading. Earthquake Engineering and Engineering Vibration, 7(4), 369-382.