ارزیابی آزمایشگاهی عملکرد بتن خودتراکم حاوی ذرات شیشه تحت شرایط مهاجم اسید سولفوریک

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی سازه، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار،گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در سال‌های اخیر، بررسی زوال تدریجی بتن تحت تاثیر عوامل خورنده نظیر حملات اسیدی از مهمترین چالش‌های تحقیقاتی در زمینه تکنولوژی بتن بوده است. از طرفی در راستای میل بسوی توسعه پایدار، تولید بتن‌های بازیافتی با بهره‌گیری از ضایعات ساختمانی و غیرساختمانی بیش از پیش مورد توجه محققین قرار گرفته است. لذا در این تحقیق آزمایشگاهی، جهت ارزیابی تأثیر افزودن ضایعات شیشه بر عملکرد بتن خودتراکم در معرض حمله اسید سولفوریک، 9 طرح مخلوط حاوی 0، 5، 10، 15 و 20 درصد ضایعات شیشه به دو صورت پودر و خرده شیشه جهت جایگزینی بخشی از مصالح سنگی ریزدانه و درشت‌دانه در نظر گرفته شد. آزمایش‌های اسلامپ، T50، قیف V، حلقه J و جعبه L، جهت بررسی رفتار بتن تازه و آزمایش‌های مقاومت فشاری و خمشی برای ارزیابی خواص بتن سخت شده انجام گردیده است. علاوه بر این، به منظور سنجش دوام نمونه‌‌ها پس از قرار دادن آن‌ها در محیط خورنده اسید سولفوریک، آزمایش‌هایی نظیر: کاهش وزنی، مقاومت فشاری و مقاومت خمشی پس از 30 و 60 روز غوطه‌وری در محلول اسید سولفوریک با 5/1=PH انجام شد. نتایج اینگونه نشان داد که با افزودن ذرات شیشه روانی، قابلیت عبور و پخش شدگی بتن افزایش می‌یابد. پس از 60 روز غوطه‌وری در اسید مقاومت فشاری در تمامی طرح‌ها کاهش یافته است. با افزودن شیشه دوام نمونه‌های قرار گرفته در معرض اسید سولفوریک به میزان قابل توجهی نسبت به طرح شاهد بهبود یافته است. تمامی نمونه‌ها پس از خوردگی دچار کاهش وزنی شدند که طرح‌های حاوی شیشه عملکرد مناسبتری را در افت وزنی نسبت به طرح شاهد نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental evaluation on the performance of self compacting concrete containing glass particles under sulfuric acid attack

نویسندگان [English]

  • Saman Rahat Dahmardeh 1
  • Mohammad Hassan Mirabimoghaddam 2
  • Mohammad Saleh Sargazi Moghaddam 1
1 Master of Science, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2 Assistant Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In the recent years, study on the gradual deterioration of concrete under effect of corrosive factors such as acid attacks has been one of the most important research challenges in the concrete technology. On the other hand, in order to achieving the sustainable development, recycled concrete production by using of building and non building wastes, is interest for researchers more than past. So in this experimental study, for assessing the performance of self compacting concrete containing glass particles under sulfuric acid attack, 9 mixtures comprising 0, 5,10,15 and 20% glass particles as fine and coarse aggregates were considered. To determine fresh and hardened behavior, Slump, T50, V-funnel, J-ring, L-box and compressive and flexural strength tests were performed. In addition, in order to specify the durability of concrete samples, after placing them in the corrosive sulfuric acid solution with PH=1.5 for 30 and 60 days, mass loss and compressive and flexural strengths tests were carried out. Results showed that with increasing glass particles, fluidity, passing ability and dispersion of self compacting concrete increased. After 60 days immersion in sulfuric acid solution, compressive strength reduced for all samples. By adding glass particles, durability of self compacting concrete improved significantly compared to the control mix. Mass of all samples decreased after corrosion, which samples containing glass showed better performance in the mass loss compared to the control sample.

کلیدواژه‌ها [English]

  • Self Compacting Concrete Glass
  • Durability
  • Sulfuric acid
  • Strength
  • weight loss

[1] Janfeshan Araghi, H.Nikbin, I.M. Rahimi Reskati, S. Rahmani, E and Allahyari, H. (2015). An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Construction and Building Materials, Volume (77), Page (461–471).

[2] رمضانیانپور، ع.ا.؛ پرهیزکار، ط. و رحمانی، ح.؛ (1383)؛ "آسیب دیدگی های بتن در محیط های اسیدی و ارائه راه حل مناسب جهت کاهش خرابی ها"؛  اولین کنگره ملی مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران.

[3] ساداتیان، س.م.؛ رشیدی، ع. و وزین رام، ف.؛ (1389)؛ "افزایش دوام بتن در مقابل خوردگی اسیدی با استفاده سنگدانه آهکی"؛  مجله علمی و پژوهشی تحقیقات بتن، سال سوم، شماره 2، صفحه (79-71).

[4] سهرابی، م.ر. و رستمی، م.؛ (1390)؛ "بررسی ویژگیهای مکانیکی بتن حاوی پوزولان بش آقاج در محیط های فاضلاب شهری"؛  پایان نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، ایران.

[5] Monteny, J. De Belie, N. Vincke, E. Verstraete, W. and Taerwe, L. (2001). Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, Volume (31), Page (1359–1365).

[6] Monteny, J. Vincke, E. Beeldens, A. De Belie, N. Taerwe, L. Van Gemert, D. and Verstraete, W. (2000). Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cement and Concrete Research, Volume (30), Page (623–634).

[7] Skariah Thomas, B. Chandra Gupta, R. and John Panicker, V. (2017). Recycling of waste tire rubber as aggregate in concrete: durability-related performance. Journal of Cleaner Production, Volume (112), Page (504-513).

[8] Bassuoni, M.T.  and Nehdi, M.L. (2007). Resistance of self-consolidating concrete to sulfuric acid attack withconsecutive pH reduction. Cement and Concrete Research, Volume (37), Page (1070–1084).

[9] Topcu, I.B.and Canbaz, M. (2004). Properties of concrete containing waste glass. Cement and Concrete Research, Volume (34), Page (267–274).

[10] Jani, Y. and Hogland, W. (2014). Waste glass in the production of cement and concrete - A review. Journal of Environmental Chemical Engineering, Volume (2), Page (1767-1775).

[11] Lu, J.X. Duan, Z.H. and Poon, C.S. (2017). Fresh properties of cement pastes or mortars incorporating waste glass

powder and cullet. Construction and Building Materials, Volume (131), Page (793–799).

[12] عمرانی، ق.ع. منوری، س.م. جوزی، س.ع. و زمانی، ن.؛ (1388)؛ "مدیریت بازیافت شیشه در شهر تهران"؛  علوم و تکنولوژی محیط زیست، دوره یازدهم، شماره چهار، صفحه (50-41).

[13] Limbachiya, M.C. (2009). Bulk engineering and durability properties of washed glass sand concrete. Construction and Building Materials, Volume (23), Page (1078–1083).

[14] Ling, T.C. Poon, C.S. Sahmaran, M. and Kou, S.C. (2011). Feasibility of using recycled glass in architectural cement mortars. Cement and Concrete Composites, Volume (33), Page (848–854).

[15] Yu, X.Tao, Z. Song, T.Y. and Pan, Z. (2016). Performance of concrete made with steel slag and waste glass. Construction and Building Materials, Volume (114), Page (737–746).

[16] Madandoust, R. and Ghavidel, R. (2013). Mechanical properties of concrete containing waste glass powder and rice husk ash. Biosystems Engineering, Volume (116), Page (113–119).

[17] Pan, Z. Tao, Z. Murphy, T. and Wuhrer, R. (2017). High temperature performance of mortars containing fine glass powders. Journal of Cleaner Production, Volume (162), Page (16-26).

[18] Castro, S.D. and Brito, J.D. (2013). Evaluation of the durability of concrete made with crushed glass aggregates. Journal of Cleaner Production, Volume (41), Page (7–14).

[19] Shayan, A. and Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and Concrete Research, Volume (34), Page (81–89).

[20] Liu, M. (2012). Incorporating ground glass in self-compacting concrete. Construction and Building Materials, Volume (25), Page (919–925).

[21] Cassar, J. and Camilleri, J. (2012). Utilisation of imploded glass in structural concrete. Construction and Building Materials, Volume (29), Page (299–307).

[22] Sadiqul Islam, G.M. Rahman, M.H. and Kazi, N. (2017). Waste glass powder as partial replacement of cement for

sustainable concrete practice. International Journal of Sustainable Built Environment, Volume (6), Page (37–44).

[23] Ling, T.C.  Poon, C.S. and Wong , H.W. (2013). Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resources, Conservation and Recycling, Volume (70), Page (25–31).

[24] Shi, C. Wu, Y. Riefler, C. and Wang, H. (2005). Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research, Volume (35), Page (987– 993).

[25] Schwarz, N. Cam, H. and Neithalath, N. (2017). Influence of a fine glass powder on the durability characteristics

of concrete and its comparison to fly ash. Cement and Concrete Composites, Volume (30), Page (486–496).

[26] Chen, C.H. Huang, R. Wu, J.K. and Yang, C.C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research, Volume (36), Page (449–456).

[27] Du, H. and Tan, K.H. (2017). Properties of high volume glass powder concrete. Cement and Concrete Composites, Volume (75), Page (22–29).

[28] Wang, H.Y.and Huang, W.L. (2010). A study on the properties of fresh self-consolidating glass concrete (SCGC). Construction and Building Materials, Volume (24), Page (619–624).

[29] Sharafi, Y. Houshiar, M. and Aghebati, B. (2017). Recycled glass replacement as fine aggregate in self-compacting concrete. Frontiers of Structural and Civil Engineering, Volume (7), Page (419–428).

[30] Najim, K.B. and Hall, M.R. (2012). Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Construction and Building Materials, Volume (27), Page (521–530).

[31] Ganesan, N. Bharati Raj, J. and Shashikala, A.P. (2013). Flexural fatigue behavior of self compacting rubberized concrete. Construction and Building Materials, Volume (44), Page (7–14).

[32] Hesami, S. Salehi Hikouei, I. and Emadi, S.A.A. (2016). Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. Journal of Cleaner Production, Volume (133), Page (228-234).

[33] Sadrmomtazi, A. Dolati-Milehsara, S. Lotfi-Omran, O. and Sadeghi-Nik, A. (2015). The combined effects of waste PET particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, Volume (112), Page (2363-2373).

[34] Okamura, H. and Ouchi, M. (2003). Self-compacting concrete. Journal of Advanced Concrete Technology, Volume (1), Page (5–15).

[35] Madandoust, R. and Mousavi, S.Y. (2012). Fresh and hardened properties of self-compacting concrete containing metakaolin. Construction and Building Materials, Volume (35), Page (752–760).

[36] Sivakumar, V.R. Kavitha, O.R. Prince Arulraj, G. and Srisanthi, V.G. (2017). An experimental study on combined effects of glass fiber and Metakaolin on the rheological, mechanical, and durability properties of self-compacting concrete. Applied Clay Science, Volume (147), Page (123-127).

[37] Kou, S.C. and Poon, C.S. (2009). Properties of self-compacting concrete prepared with recycled glass aggregate. Cement and Concrete Composites, Volume (31), Page (107–113).

[38] Emam Ali, E. and Al-Tersawy, S.H. (2012). Recycled glass as a partial replacement for fine aggregate in self compacting concrete. Construction and Building Materials, Volume (35), Page (785–791).

[39] Feys, D. (2009). Influence of Self-Compacting Concrete Composition on Sulfuric Acid Attack. RILEM PROCEEDINGS, Volume (65), Page (435–443).

[40] Siad, H.Mesbah, M.A. and Kamali Bernard, S. (2009). Influence of Natural Pozzolan on The Behavior of Self-Compacting Concrete Under Sulfuric and Hydrochloric Acid  Attacks, Comparative Study. The Arabian Journal for Science and Engineering, Volume (35), Page (183-195).

[41] Xiao, J.Qu, W. Li, W and Zhu, P. (2016). Investigation on effect of aggregate on three non-destructive testing

properties of concrete subjected to sulfuric acid attack. Construction and Building Materials, Volume (115), Page (486–495).

[42] Zhang, M.Zhao, M. Zhang, G. Mann, D. Lumsden, K and Tao, M. (2016). Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Construction and Building Materials, Volume (124), Page (373–382).

[43] Ling, T.C. and Poon, C.S. (2011). Properties of architectural mortar prepared with recycled glass with different particle sizes. Materials and Design, Volume (32), Page (2675–2684).

[44] Tan, K.H.and Du, H. (2013). Use of waste glass as sand in mortar: Part I – Fresh, mechanical and durability properties. Cement and Concrete Composites, Volume (35), Page (109–117).

[45] Siad, H. Lachemi, M. Sahmaran, M. and Anwar Hossain, K.M. (2016). Effect of glass powder on sulfuric acid resistance of cementitious materials. Construction and Building Materials, Volume (113), Page (163–173).

[46] سایت کارخانه سیمان سیستان. (http://www.zabolcement.com)

[47] ASTM C 127. (2004). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate.

[48] ASTM C 128. (2004). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate.

[49] ASTM C 33. (2004). Standard Specification for Concrete Aggregate.

[50] سایت کارخانه نامیکاران. (http://www.namikaran.com)

[51] EFENARC. (2005). Specification and Guidelines for Self-Compacting Concrete. European Federation.

[52] Parhizkar, T. Raiess Ghasemi, A.M. Pourkhorshidi, A.R. and Ramezanianpour, A.A. (2010). Influence of Fly Ash and Dense Packing Method to Increase Durability of HPC Subjected to Acid Corrosion. Second International Conference on  Sustainable Construction Materials and Technologies, Università Politecnica delle Marche, Ancona, Italy.

[53] Rahmani, H. and Ramzanianpour, A.A. (2008). Effect of silica fume and natural pozzolanas on sulfuric acid resistance of dense concretes. ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING), Volume (9), Page (303–319).

[54] ASTM C 39. (2012). Strength Test on Concrete, Compressive Strength Test.

[55] ASTM C 78. (2012). Strength Test on Concrete, Flexural Strength Test.

[56] ASTM C 597. (2003). Standard test method for Ultrasonic Pulse Velocity (UPV) Through concrete specimens.

[57] British Standard Institution. (1983). Method for determination of water absorption. B.S.1881, Part 122.

[58] Aly, M. Hashmi, M.S.J. Olabi, A.G. Messeiry, M. Abadir, E.F. and Hussain, A.I. (2012). Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar. Materials and Design, Volume (33), Page (127–135).

[59] Ismail, Z.Z. and AL-Hashmi, E.A. (2009). Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Management, Volume (29), Page (655–659).

[60] Saint-Pierre, F. Philibert, A. Giroux, B. and Rivard, P. (2016). Concrete Quality Designation based on Ultrasonic Pulse Velocity. Construction and Building Materials, Volume (125), Page (1022–1027).