ارزیابی امکان رخداد گسیختگی پیشرونده در قابهای خمشی فولادی(معمولی، متوسط و ویژه) بر اثرحذف ستون

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

ساختمانها در طول عمر مفید خود ممکن است تحت تاثیر تهدیدات خارجی مختلفی قرار گیرند. این تهدیدات می توانند با آسیب رساندن به المانهای اصلی ساختمان باعث گسترش خرابی و گسیختگی پیشرونده در سازه گردند. طی دهه های اخیر محققین تلاش گسترده ای در مورد نحوه ی مقابله با پدیده های غیر طبیعی مانند انفجار، تصادف و خرابکاری های تروریستی نموده اند. در این تحقیق یک سازه ی 5 طبقه ی فولادی با سیستم های قاب خمشی معمولی، متوسط ویژه ( معادل شکل پذیری های کم، متوسط و زیاد) بر اساس آئین نامه های داخلی طراحی و ضوابط هر کدام کنترل شده اند. در ادامه با انتخاب یک قاب میانی، امکان رخداد گسیختگی پیشرونده در اثر حذف ستون های کناری و میانی هر سه قاب بر اساس دستورالعمل های GSA و UFC بررسی شده است. با تعریف مفاصل پلاستیک متمرکز در انتهای المانها و با استفاده از پارامترهای کاهندگی مقاومت و سختی حاصل از مطالعات آزمایشگاهی سایر محققین، رفتار دینامیکی غیر خطی قابها در اثر حذف ستون بررسی شده است. نتایج نشان می دهد که امکان آسیب قاب های خمشی فولادی ویژه بیش از قابهای خمشی متوسط و معمولی می باشد. همچنین نتایج مشخص می کند که بر خلاف مقاوم سازی های لرزه ای که فراهم کردن شکل پذیری روشی مهم برای کاهش آسیب ساختمانها می باشد، در خرابی های ناشی از بارهای ثقلی، بیشتر بودن مقاومت و سختی اعضا می تواند گسترش خرابی را محدود نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation the possibility of the occurrence of progressive collapse in steel moment frames (ordinary, intermediate and special) due to sudden column removal

نویسندگان [English]

  • Kourosh Mehdizadeh 1
  • Abbas Karamodin 2
1 PhD Candidate, Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Associate Professor, Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Buildings during their useful life may be affected by different external threats. These threats can harm the key elements of buildings and thus lead to progressive collapse. In recent decades, researchers have been working extensively on how to deal with abnormal events such as explosions, accidents and terrorist attacks. In this study, a typically 5-story steel structure with ordinary, intermediate and special (low, medium and high ductility levels) moment frames designed based on internal regulations and all criteria have been controlled. Then by selecting a middle two-dimensional frame, the possibility of occurrence of progressive collapse caused by the sudden removal of corner and middle columns of all three frames have been investigated based on the guidelines of the GSA and the UFC. By defining the concentrated plastic hinges at the element ends and by using the strength and stiffness attenuation parameters resulted from laboratory studies of other researchers, non-linear dynamic behavior of frames due to sudden removal of columns have been investigated. Results show that the possibility of damage to special moment frame is more than the intermediate and ordinary moment frames. Also the results indicate unlike the seismic retrofitting that providing ductility is an important method to reduce damages to the buildings, for damages caused by gravity loads, higher strength and stiffness can limit the progress of damages.

کلیدواژه‌ها [English]

  • Steel Moment Resistance Frame
  • Progressive collapse
  • Ductility
  • Deterioration
  • GSA Guideline
  • UFC Guideline
[1] U. S. General Services Administration. (2003). Progressive collapse analysis and design guidelines for new federal office building and major modernization projects, Washington, DC.
[2] Department of Defence (DOD). (2010). unified facilities criteria (UFC): Design of structures to resist progressive collapse, Washington (DC).
[3] ASCE 7-05 (2005). Minimum design loads for buildings and other structures. American Society of Civil Engineers (ASCE).
[4] Building Code Requirements for Structural Concrete ACI 318-05 and Commentary-ACI 318R-05, (2005). American Concrete Institute, Farmington Hills, Michigan.
[5] Szyniszewski, S. (2009). Probabilistic approach to progressive collapse prevention. Structures 2009: Don’t Mess with Structural Engineers, ASCE, 2836-2843.
[6] Jinkoo, J., Lee, Y. and Choi, H. (2009). Progressive Collapse resisting capacity of braced frames. The Structural Design of Tall and Special Buildings.
[7] Park, J. and Kim, J. (2010).  Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column”, Engineering Structures, 1547-1555.
[8] Liu, M. (2011). Progressive collapse design of seismic steel frames using structural optimization. Journal of Constructional Steel Research, 322–332.
[9] Szyniszewski, S. and Krauthammer, T. (2012). Energy flow in progressive collapse of steel framed buildings. Engineering Structures, 142–153.
[10] Hadianfard, M.A. and Wassegh, M. (2012). Linear and nonlinear analysis of progressive collapse for seismic designed steel moment frames. 14th international Conference on Community in Civil and Building Engineering.
[11] Morouri, S. and Hadidi, A. (2012). Assessment the behaviour of 3D steel moment frames subjected to progressive collapse by nonlinear dynamic procedure. Trends in Advanced Science and Engineering.
[12] Ruirui, S., Zhaohui, H. and Ian, B. (2013).  Progressive collapse analysis of steel structures under fire conditions. PhD Research Student, Department of Civil and Structural Engineering, the University of Sheffield, Sheffield.
[13] Kim, J. and Jung, M.K. (2013). Progressive collapse resisting capacity of tilted building structures. The Structural Design of Tall and Special Buildings, 1359-1375.
[14] Tavakoli, H. and Rashidi Alashti.A (2013). Evaluation of progressive collapse potential of multi-story moment resisting steel frame buildings under lateral loading. Sharif University of Technology, Scientia Iranica. 20(1), 77-86.
[15] Nateghi, F.A. and Parsaeifard, N.  (2013)  Studying the effect of initial damage on failure probability of one story steel buildings. Iranica Journal of Energy & Environment 4{(3) Geo-hazard and civil Engineering}:258-264.
[16] Mashhadiali, N. and Kheyroddin, A. (2014). Progressive collapse assessment of new hexagrid structural system for tall buildings. Structural Design of Tall and Special Buildings, 947–961.
[17] Tu, B. and Zhao, D. (2014). Judgment of key components during progressive collapse. Electronic Journal of Geotechnical Engineering (EJGE).
[18].Hosseini, M., Fanaie, N. and Yousefi, A.M. (2014). Studying the vulnerability of steel moment resistant frames subjected to progressive collapse, Indian Journal of Science and Technology, 335-342.
[19] Karimiayan, S., Moghadam, A.S. and Husseinzadeh Kashan, A. and Karimiyan, M. (2015). Progressive collapse evaluation of RC symmetric and asymmetric mid-rise and tall buildings under earthquake loads. International Journal of Civil Engineering, Vol.13, NO.1, Transaction A: Civil Engineering.
[20] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10. (In Persian).
[21] Ibarra, L., Medina, R. and Krawinkler, H. (2002). Collapse assessment of deteriorating SDOF systems. Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, Paper 665, Elsevier Science Ltd.
[22] Ibarra L. F., Medina R. A. and Krawinkler H., (2005). Hysteretic models that incorporate strength and stiffness deterioration.  Earthquake Engineering and Structural Dynamics, 34(12), pages. 1489-1511.
[23] Lignos, D.G. and Krawinkler, H. (2009). Side-sway collapse of deteriorating structural systems under seismic excitations. Report no. TB 172. Stanford (CA): John A. Blume Earthquake Engineering Research Centre. Department of Civil and Environmental Engineering, Stanford University, 1-12.
[24] Lignos, D.G. and Krawinkler, H. (2011). Deterioration modelling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137 (11), 1291-1302.
[25] Lignos, D.G. and Krawinkler, H. (2010). A steel database for component deterioration of tubular hollow square steel columns under varying axial load for collapse assessment of steel structures under earthquakes. In Proceedings of the 7th International Conference on Urban Earthquake Engineering (7CUEE), Tokyo, Japan.
[26] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10. (In Persian).
[27] INBC. (2013). Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6. (In Persian).
[28] BHRC. (2014). Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre, Standard No. 2800. (In Persian).
[29] Lignos, D.G. and Krawinkler, H. (2010). A steel database for component deterioration of tubular hollow square steel columns under varying axial load for collapse assessment of steel structures under earthquakes. In Proceedings of the 7th International Conference on Urban Earthquake Engineering (7CUEE), Tokyo, Japan.
[30] Lignos, D.G. and Krawinkler, H. (2007). A database in support of modelling of component deterioration for collapse prediction of steel frame structures. In Proceeding of the ASCE Structures Congress, Long Beach CA, SEI institute.
[31] Gupta, A. and Krawinkler, H. (1999). Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. Technical Report 132, The John A. Blume Earthquake Engineering Research Centre, Department of Civil Engineering, Stanford University, Stanford, CA. http://server2.docfoc.com/uploads/Z2015/12/26/JWVv1cW5w9/b9e07b8eadbb3936bc52f79b7df20534.pdf
[32] Lignos, D.G. and Krawinkler, H. (2012). Development and Utilization of Structural Component Databases for Performance-Based Earthquake Engineering. Journal of Structural Engineering, 139 (8), 1382-1394.
[33] Shanmugam, N.E. and Ting, L.C. (1995). Welded interior box-column to I-beam connections. Journal of Structural Engineering, 824-830.
[34] Mazzoni, S. and Mckenna, F., Scott, M. H. and Fenves, G. L. (2006). OpenSEES Command Language Manual. http://OpenSEES. Berkeley.edu/OPENSEES/manuals/user manual/OpenSEES Command Language Manual June 2006.pdf.
[35] FEMA P 695. (2009). Quantification of Building Seismic Performance Factors. Washington, D.C. Federal Emergency Management Agency, USA.
[36] FEMA 356. (2000). Pre-Standard and Commentary for the seismic Rehabilitation of Buildings. Washington D.C. Federal Emergency Management Agency, USA.