تحلیل خرابی پیشرونده در ساختمان های بتن آرمه با پلان L شکل

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

یکی از مهم ترین مسائل سازه ای در پدافند غیرعامل بحث خرابی پیشرونده می باشد.خرابی پیشرونده زمانی اتفاق می افتد که در اثر انهدام ناگهانی عضو سازه ای در اثر حوادث عمدی، نظامی، تروریستی، حوادث غیرمترقبه نظیر زلزله یا خطاهای اجرائی، خرابی به اعضای مجاور انتشار یافته و گسترش خرابی به صورت زنجیره ای باعث خرابی بخشی از سازه یا کل سازه می گردد. عملکرد سازه با تعیین المان کلیدی (المان دارای بیشترین پتانسیل خرابی پیشرونده) و تقویت آنها ارتقا می یابد. در این مقاله سازه های7،4و12طبقه بتن آرمه دارای سیستم مقاوم قاب خمشی و پلان L شکل انتخاب شده است. جهت تعیین المان کلیدی، موقعیت های مختلف حذف ستون ها درپلان درنظرگرفته شده است. برای اولین بار، خرابی پیشرونده با دو روش شاخص حساسیت و ضریب باربررسی شده و سازه ها تحت تحلیل استاتیکی غیرخطی افزاینده قائم (Push Down Analysis) قرار گرفته اند. براساس ظرفیت باربری سازه، شاخص حساسیت و براساس بارتعادل متناظر با تغییرمکان هدف به بارثقلی کل، ضریب بارمحاسبه شده است. المان دارای بیشترین مقدار شاخص حساسیت و کمترین مقدار ضریب بار به عنوان المان کلیدی در خرابی پیشرونده شناسایی می شود. نتایج حاصل در این مقاله نشان می دهند که درساختمان بتن آرمه خمشی با پلان L شکل، ستون های گوشه بیشترین پتانسیل خرابی پیشرونده را دارد. علاوه براین نتایج نشان می دهد که سازه های با ارتفاع بیشتر عملکرد بهتری در برابر خرابی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Progressive collapse analysis of reinforced concrete in buildings L-shaped plan

نویسندگان [English]

  • Hamze Rouhi 1
  • Ali Kheyroddin 2
1 PhD student in Structural Engineering, Department of Civil Engineering. Semnan University, Semnan, Iran
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

One of the most important issues discussed structural passive defense is progressive collapse. Progressive collapse occurs the sudden destruction caused by the deliberate structural member by accidents or disasters, such as earthquakes and terrorist military or operational errors and downtime has spread to adjacent organs and extended downtime for the chain is ruining a part of or the entire structure. Structural performance by identifying the key elements (elements with the greatest potential for progressive collapse) will be upgraded and strengthened them. In this paper buildings with 4,7and 12 stories of reinforced concrete moment frame with resistant system has been selected L-shaped plan. To determine the key elements, different situations Delete columns plan, is considered. For the first time, the progressive collapse by two method of the sensitivity index and load factor was evaluated and structures have been analysised nonlinear static analysis (Push Down Analysis).From of the values of the bearing capacity of the structure, sensitivity index and the load balance corresponding to the target displacement, the load factor is calculated.The  Element  with  the maximum of sensitivity as well as the lowest load factor as a key element in determining the progressive collapse. The results in this paper show that L-shaped concrete building plan corner columns is the greatest potential for progressive collapse. Moreover, the results indicate that the structures in height, has a better performance against progressive collapse.
 

کلیدواژه‌ها [English]

  • Progressive collapse Push down analysis
  • Load Factor
  • Sensitivity index
  • Key elements
  • Catenary action

 

[1] U.S. General Service Administrations (GSA). (2003). Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, Washington, D.C.

[2] Unified Facilities Criteria (UFC4-023-03). )2009(. Design of Buildings to Resist Progressive Collapse, Washington, D.C.

[3] Astaneh-Asl, A. (2003).Progressive Collapse Prevention in New and Existing Buildings. In: 9th Arab Structural Engineering Conference. United Arab Emirates.

[4] Astaneh-Asl, A. and Jones, B. and Zhao, Y. and Hwa, R. (2002). Progressive Collapse Resistance of Steel Building Floors. In: Report number: CB/CEE-STEEL-03. University of California at Berkeley.

[5] مهرابی، ف.، خیرالدین، ع. و گرامی، م. (1391).  ارزیابی پتانسیل خرابی پیش رونده در ساختمان های فولادی طرح شده براساس آیین نامه ی ایران. مهندسیعمران ؛  شماره 4 ، صفحه 65 تا 72.

[6] Mashhadiali, N. and Kheyroddin, A. (2014). Progressive Collapse Assessment of New Hexagrid Structural System for Tall Buildings. Structural Design of Tall and Special Buildings. Volume (23). No. 12 947-961.

[7]رحمانی ا ،اژدری م ، مویدیان م. (1392).  تاثیر عملکرد زنجیره ای بر کاهش میزان آسیب پذیری سازه های قاب خمشی فولادی در برابر انهدام پیشرونده. علوم و فناوری های پدافند غیرعامل. شماره 3. صفحه 157تا166.

[8] Fragopol, D. M. and Curley J. P. (1987). Effects of Damage and Redundancy on Structural Reliability. Journal of Structural Engineering, ASCE, 113(7), 1533-1549.

[9] Ito, T. and  Ohi, K. and Li, Z. (2005).  A Sensitivity Analysis Related to Redundancy on Framed Structures Subjected to Vertical Loads. Transactions of Structural and Construction Engineering, 593, 145-151.

[10] Kim, J. and An, D. (2009). Evaluation of Progressive Collapse Potential of Steel Moment Frames Considering Catenary Action. The Structural Design of Tall and Special Buildings, 18, 455-465.

[11] Ito, T. and Fukuyama, T. (2011). A Potential Strength and Ultimate Behavior of Framed Structures Considering Catenary Effects after Failure Mechanism Formation Subjected to Vertical Load. Theoretical and Applied Mechanics Japan, 59, 29-38.

[12] Choi, J. H., Ito, M., and Ohi, K. (2007).  Prevention of Building Structural Collapse Caused by Accidental Events. In: proc. Of 2nd International Symposium on Improvement of Structural Safety for Building Structures, 85-98.

[13] Kwon, K. H., Park, S. R. M. and Kim, J. K.  (2012). Evaluation of Progressive Collapse Resisting Capacity of Tall Building. International Journal of High-Rise Buildings, 1(3), 229-235.

[14] Ito, T. and Takemura, T. (2014). Sensitivity Analysis of Redundancy of Regular and Irregular Framed. International Journal of High-Rise Buildings, Vol. 3, No. 4 297–304.

 [15] خیرالدین، ع.  و مداحی، م. (1395).  بررسی خرابی پیشرونده در قاب های خمشی فولادی با پلان L شکل به کمک آنالیز  حساسیت . مهندسی سازه و ساخت، شماره(2)، صفحه 73 تا 85.

[16] خسروی، ر. (1394). ارزیابی خرابی پیش‌رونده در ساختمان‌های بتن مسلح با سیستم سقف حبابدار. کارشناسی ارشد. دانشگاه خلیج فارس.

[17] Kim, J. and Hong, S. (2012). Progressive Collapse Performance of Irregular Buildings. Structural Design of Tall and Special Buildings, 20, 721–734.

[18] Sagiroglu, S. (2012). Analytical and Progressive Collapse Resistance of Reinforced Concrete Structures. Doctor of Philosophy in Civil Eng, Northeastern.

[19] معاونت امور مسکن وساختمان؛ وزارت مسکن و شهرسازی . (1392).  بارهایواردبرساختمان. تهران. مبحث ششم مقررات ملی ساختمان

[20] معاونت امور مسکن وساختمان؛ وزارت مسکن و شهرسازی . (1392).  طرح و اجرای ساختمانهای بتن آرمه. تهران. مبحث نهم مقررات ملی ساختمان

 [21] مرکز تحقیقات ساختمان و مسکن. (1394).  طراحیساختمانهادربرابرزلزله. استاندارد 2800 ویرایش چهارم. تهران. مقررات ملی ساختمان .

[22] Computers and structures- Inc, (2014). ETABS2015 Software. Berkeley, CA.

[23] Marjanishvili, S. and Agnew, E. (2006). Comparison of Various Procedures for Progressive Collapse Analysis. J.Perform. Constr. Facil., 20(4), 365-374.

[24] Federal Emergency Management Agency. (2000). Pre Standard and Commentary for the Seismic Rehabilitation of Buildings. FEMA 356, Washington, D.C.

[25] Takumi, Ito. and Toshinobu, T. (2014). Sensitivity Analysis Related to Redundancy of Regular and Irregular Framed Structures after Member Disappearance. International Journal of High-Rise Buildings December2014, Vol 3, No 4,297-304.