مدلسازی ترکیبی در پروژه‌های ساخت با استفاده از ترکیب رویکردهای شبیه‌سازی پویایی سیستم و مدلسازی عامل‌محور

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده عمران، دانشگاه علم و صنعت ایران

2 استادیار، دانشکده مهندسی، دانشگاه پیام نور

3 دانشگاه علم و صنعت ایران

چکیده

شبیه سازی ترکیبی ما را قادر می سازد نقاط قوت روش های شبیه سازی مختلف را با یکدیگر ترکیب نماییم. ترکیب رویکردهای شبیه شبیه سازی پویایی سیستم و مدلسازی عامل محور باعث هم افزایی در قدرت روش های شبیه سازی می شود و مدلسازان را قادر می سازد موضوعات با پیچیدگی بیشتر را مورد مطالعه قرار دهند. در این تحقیق روشی مناسب برای ترکیب رویکردهای شبیه سازی پویایی سیستم و عامل محور در صنعت ساخت ارائه شده است. روش پیشنهادی با درنظر گرفتن موارد مهمی که یک مدلساز طی انجام شبیه سازی با روش پویایی سیستم و عامل محور باید در نظر داشته باشد می تواند راهنمایی کامل برای مدلسازان باشد. در این روش پیشنهادی پنج مرحله برای ایجاد مؤثر یک مدل ترکیبی پویایی سیستم و عامل محور پیشنهاد شده است. این مراحل به صورت قدم به قدم یک مدل ترکیبی پویایی سیستم و عامل محور برای حل مشکلات پیچیده با توجه به ویژگی های آن مسأله ایجاد می کنند. برای ارزیابی عملکرد روش شبیه شبیه سازی ترکیبی پیشنهادی، این روش بر روی یک پروژه واقعی پیاده شده و رفتار ناایمن گروه های مختلف کاری با توجه به تعاملات بین این گروه های کاری و نیز محیط اطراف مورد بررسی قرار گرفته و شبیه شبیه سازی می گردد. در ادامه مدت زمان انجام پروژه با در نظر گرفتن اثر تأخیرهایی که به علت رفتار ناایمن در اتمام پروژه ایجاد می شود پیش بینی می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hybrid simulation by combining system dynamics and agent-based modeling approaches in construction projects

نویسندگان [English]

  • Mostafa Khanzadi 1
  • Farnad Nasirzadeh 2
  • Mostafa Mir 3
1 Associate Professor, Department of Civil Engineering, Iran University of Science and Technology
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Payame Noor University
3 M.S. student, Department of Civil Engineering, Iran University of Science and Technology
چکیده [English]

Hybrid modeling enables us to use strengths of various simulation approaches. System dynamics is a continuous simulation approach which uses feedback loops, stocks and flows to simulate the complicated behavior of complex systems over time. Agent based modeling is a simulation methodology which uses some specified rules to simulate the behavior of agents in their surrounding environment. Combining of system dynamics and agent-based modeling approaches enhance the capabilities and strengths of individual simulation paradigms. Also, it enables modelers to study more sophisticated problems. This paper presents a novel framework to integrate system dynamics and agent-based approaches to be implemented on construction projects. The proposed approach can provide a complete guideline for modelers by accounting for the most important issues which should be considered by modeler during integrating system dynamics and agent-based approaches. The framework proposes five steps to develop hybrid system dynamics and agent-based models. This step by step process helps to solve complex construction problems considering features of the problem. To evaluate the performance of the proposed approach it is implemented in a real project to investigate the unsafe behavior of different workgroups in a construction site taking account of the interactions with other working groups as well as the surrounding environment. Finally, the project duration is predicted taking account of unsafe behavior of different working groups.

کلیدواژه‌ها [English]

  • hybrid simulation
  • Construction management
  • Construction projects
  • system dynamics
  • Agent-based modeling

[1] Schieritz, N. and Grobler, A. (2003). Emergent structures in supply chains-a study integrating agent-based and system dynamics modeling. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences.

[2] Lorenz, T. and Jost, A. (2006). Toward an orientation framework in multi-paradigm modeling. In: Proceeding of the 24th International Conference System Dynamics Society.

[3] Lättilä, L., Hilletofth, P. and Lin, B. (2010). Hybrid simulation models–when, why, how?. Expert systems with applications, 37(12), 7969-7975.

[4] Mawdesley, M.J. and Al-Jibouri, S. (2009). Modelling construction project productivity using systems dynamics approach. International Journal of Productivity and Performance Management, 59(1), 18-36.

[5] Mostafavi, A., Abraham, D., Delaurentis, D, Sinfield, J. and Queiroz, C. (2012). Innovation Policy Assessment for Civil Infrastructure System-of-Systems. In: Construction Challenges in a Flat World in Construction Research Congress, ASCE.

[6] Wu, D.D., Kefan, X., Hua, L., Shi, Zh. and Olson, D.L. (2010). Modeling technological innovation risks of an entrepreneurial team using system dynamics: an agent-based perspective. Technological Forecasting and Social Change, 77(6), 857-869.

[7] Nasirzadeh, F., Afshar, A. and Khanzadi, M. (2008). System dynamics approach for construction risk analysis. International Journal of Civil Engineering, 6(2), 120-131.

[8] Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. Irwin: McGraw-Hill.

[9] Swinerd, C. and McNaught, K.R. (2012). Design classes for hybrid simulations involving agent-based and system dynamics models. Simulation Modeling Practice and Theory, 25, 118-133.

[10] Sanchez, S.M. and Lucas, T.W. (2002). Exploring the world of agent-based simulations: simple models, complex analyses. In: Proceedings of the 34th conference on winter simulation: exploring new frontiers, Winter Simulation Conference.

[11] Sawhney, A., Bashford, H., Walsh, K. and Mulky, A.R. (2003). Agent-based modeling and simulation in construction. In: Proceedings of the 2003 Winter Simulation Conference, IEEE.

[12] Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. In: Proceedings of the National Academy of Sciences of the United States of America, 7280-7287.

[13] Ren, Z. and Anumba, C. (2004). Multi-agent systems in construction–state of the art and prospects. Automation in Construction,13(3), 421-434.

[14] Schieritz, N. and Milling, P.M. (2003). Modeling the forest or modeling the trees. In: Proceedings of the 21st International Conference of the System Dynamics Society.

[15] Barbati, M., Bruno,G. and Genovese, A. (2012). Applications of agent-based models for optimization problems: A literature review. Expert Systems with Applications, 39(5), 6020-6028.

[16] Phelan, S.E. (1999). A note on the correspondence between complexity and systems theory. Systemic Practice and Action Research, 12(3), 237-246.

[17] Alvanchi, A., Lee, S. and AbouRizk, S. (2011). Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction. Computer Aided Civil and Infrastructure Engineering, 26(2), 77-91.

[18] Shanthikumar, J. and Sargent, R. (1983). A unifying view of hybrid simulation/analytic models and modeling. Operations research, 31(6), 1030-1052.

[19] Martinez-Moyano, I. ,Sallach, D., Bragen, M. and Thimmapuram, P.R. (2007). Design for a multilayer model of financial stability: Exploring the integration of system dynamics and agent-based models. System Dynamics, 1-16.

[20] Parunak, H.V.D., Savit, R. and Riolo, R.L. (1998). Agent-based modeling vs. equation-based modeling: A case study and users’ guide. In: Multi-Agent Systems and Agent-Based Simulation, Springer.

[21] Glendon, A.I. and Litherland, D.K. (2001). Safety climate factors, group differences and safety behavior in road construction. Safety science, 39(3), 157-188.

[22] Tarrants, W. (1970). A definition of the safety measurement problem. Journal of Safety Research, 2(3), 106-108.

[23] Rockwell, T. (1959). Safety performance measurement.  Journal of Industrial Engineering, 10(1), 12-16.

[24] Choudhry, R.M., Fang, D. and Mohamed, S. (2007). The nature of safety culture: A survey of the state-of-the-art. Safety Science, 45(10), 993-1012.

[25] Tarrants, W.E. (1980).The measurement of safety performance.

[26] Fitch, H.G., Hermann, J. and Hopkins, B. (1976). Safe and unsafe behavior and its modification. Journal of Occupational and Environmental Medicine,18(9), 618-622.