بررسی اثر تحریک چند تکیه گاهی بر روی پاسخ لرزه ای پل های ترکه ای

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری مهندسی زلزله، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

3 کارشناسی ارشد مهندسی زلزله، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در تحقیق حاضر، پاسخ لرزه‌ای پل‌های ترکه‌ای تحت تحریک چند تکیه‌گاهی بررسی شده است. موج زلزله در هنگام حرکت در مسیر خود دچار تغییراتی می‌شود که عمدتا ناشی از اثر سه اصلی اثر گذر موج، کاهش همبستگی و اثرات خاک است. در سازه‌های طویل، برای مثال پل‌های ترکه‌ای، این تغییرات بسیار مشهود بوده وشاید تحلیل سازه بصورت سنتی و با فرض تحریک یکنواخت تمامی تکیه‌گاه‌ها بصورت همزمان صحیح و محافظه‌کارانه نباشد. از این رو، بررسی پاسخ‌های پل ترکه‌ای تحت زلزله غیریکنواخت ضروری به نظر می‌رسد. بدین منظور، شتاب نگاشت مصنوعی به روش کریجینگ، بر اساس یه سری شتاب نگاشت معلوم در تکیه‌گاه غربی پل تولید شده است. در ادامه، تحلیل غیرخطی لرزه‌ای انجام شده و نیروی محوری کابل‌ها، لنگر  عرشه، لنگر پایه و جابجایی نسبی در دو حالت تحریک یکنواخت و غیر یکنواخت با یکدیگر مقایسه شده‌اند. نتایج حاکی از آن است که تحریک غیریکنواخت در برخی موارد موجب افزایش پاسخ لرزه‌ای و سایر موارد موجب کاهش پاسخ می‌شود. این در حالیست که انرژی شتاب نگاشت غیریکنواخت نسبت به شتاب نگاشت یکنواخت کاهش یافته است. هرچند انتظار می رود پاسخ‌ها به علت کاهش انرژی شتابنگاشت‌ها کاهش یابند ولی به علت تغییر در توزیع نیروی زلزله منجر به افزایش برخی پاسخ‌ها می شوند. از این جمله میتوان به افزایش نیروی محوری کابل‌ها به علت افزایش جابجایی نسبی دو انتهای کابل اشاره کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic response of cable stayed bridges under multi support excitation

نویسندگان [English]

  • Mahmoud Reza ُُShiravand 1
  • Parsa Parvanehro 2
  • Sina Bagheri 3
1 Assistant Professor, Department of Civil Engineering, Shahid Beheshti University, Tehran, Iran
2 PhD student in Earthquake Engineering, Civil and Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
3 MSc of Earthquake Engineering, Civil and Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In this Study, the seismic response of cable stayed bridges have been evaluated under multi-support excitations. There are three sources that cause the earthquake wave characteristics change during its propagation path. Local site effect, loss of coherency and wave passage effect are three sources of spatial variation of seismic ground motions. In long span structures, such as cable supported bridges, this phenomenon is more evident and traditional analyzing (uniform excitation) may not be valid and be conservative. Thus, it is necessary to investigate the response of cable stayed bridges under non-uniform excitations. For this purpose, the non-uniform time histories were artificially generated using Kriging method based on a set of known time history in the west support of bridge. Nonlinear time history analysis was performed and cables axial force, deck moment, pylons moment and finally drift ratio of bridge have been examined in order to investigate how non-uniform excitation change the seismic response of bridge compared with uniform excitations. Results show non-uniform excitation in some bridge components increase responses and decreases in the others. In non-uniform excitation, although total time history energy is lesser than uniform excitation, it can significantly change the distribution of the forces and makes differential displacement between cables supports and increase the possibility of failure.

کلیدواژه‌ها [English]

  • Multi-Support Excitation
  • Cable stayed bridge
  • Kriging method
  • Spatial Variation of Ground Motion
  • Earthquake

[1] Zerva, A. (2002). Spatial variation of seismic ground motion: An overview. International Journal of Applied Mechanics, 55(3), 271-297.

[2] Bayrak, O. (1996). Effect of Multiple Seismic Input on The Response of Long Multi-Span Bridges. In: 11th World Conference on Earthquake Engineering (WCEE).  Acapulco: Oxford Elsevier Science , 523.

[3] Bogdanoff, J., Goldberg, J., Schiff, A. (1967). The Effect of Ground Transmission Time on The Response of Long Structures, bulletin of the  Seismological Society of America, 55 (3), 627-640.

[4] Dumanoglu, A. and Soyluk, K. (2003). A Stochastic Analysis of Long Span Structures Subjected to Spatially Varying Ground Motions Including The Site-Response Effect. International Journal of Engineering Structure, 25 (10), 1301-1310.

[5] Saxena, V., Deodatis, G., Shinozuka, M. (2000). Effect of Spatial Variation of Earthquake Ground Motion on The Non-Linear Dynamic Response of Highway Bridges. In: 12th World Conference on Earthquake Engineering (WCEE). Auckland: New Zealand Society of Earthquake Engineering. 2227.

[6] Soyluk, K. (2004). Comparison of Random Vibration Methods for Multi-Support Seismic Excitation of Long-Span Bridges. International Journal of Engineering Structure, 26 (9) .1573-1583.

[7] Wang, J. (2003). Analysis of the seismic response of highway bridges to multiple support excitations. Ph.D thesis. University of Canterbury, Department of Civil Engineering.

[8] Berrah, M and Kausel, E. (1993). A modal combination rule for spatially varying seismic motions. Earthquake Engineering Structural Dynamics, 22(9). 791–800.

[9] Der Kiureghian A., Keshishian P., and Hakobian, A. (1997). Multiple support response spectrum analysis of bridges including the site response effect and the MSRS code, California: Earthquake Engineering Research Center Report No. UCB/EERC-97/02, University of California, Berkeley.

[10] Der Kiureghian, A, and Neuenhofer, A. (1992).  Response spectrum method for multiple support seismic excitation. Earthquake Engineering Structural Dynamics. 21 (8), 713–740.

[11] Zerva, A. (1992). Seismic loads predicted by spatial variability models. Structural. Safety.11(3-4), 227–243.

[12] Krige, D. (1966).Two-Dimensional Weighted Moving Average Trend Surfaces for Ore Valuation. Journal of

South African Institute of Mining and Metallurgy, 13-38.

[13] Journel, A. and Huijbregts, C. (1978). Mining Geostatistics, London: Academic Press, 159-215.