پاسخ ستون های فولادی با مقطع جعبه ای در شرایط آتش سوزی

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استاد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 استادیار، دانشکده مهندسی دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشجوی کارشناسی ارشد مهندسی سازه، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

با توجه به حساسیت خواص مکانیکی فولاد در برابر افزایش دما، بررسی اثرات آتش بر روی سازه‌های فولادی از اهمیتی دو ‌چندان برخوردار است. ستون‌ها به عنوان اجزای باربر اصلی یک سازه، می‌توانند به شدت در برابر آتش‌سوزی آسیب‌پذیر ‌باشند. در این تحقیق رفتار ستون‌های ثقلی فولادی با مقطع جعبه‌ای تحت اثر آتش مورد بررسی قرار گرفته است. این نوع از ستون‌ها در طراحی‌ سازه‌های فولادی معمول در ایران به طور عمده استفاده می‌شوند. در این تحقیق رفتار این ستون‌ها تحت اثر آتش توسط روش اجزای محدود بررسی شده است.  بدین منظور ابتدا مدل اجزای محدود یک ستون فولادی طبق داده‌های آزمایشگاهی موجود، تهیه و مشابه نمونه آزمایشگاهی بارگذاری و تحلیلی شده است. پس از صحت‌سنجی نتایج حاصل از مدل‌ اجزای محدود در مقایسه با داده‌های آزمایشگاهی، نمونه‌های مختلفی از ستون‌های ثقلی با مقطع جعبه‌ای بر اساس آیین‌نامه فولاد ایران طراحی و توسط نرم‌افزار آباکوس مدل‌سازی و تحلیل شده است. اثر نسبت عرض به ضخامت ورق‌های ستون، نسبت بار و میزان لاغری بر مقاومت نهایی ستون مورد بررسی قرار گرفته و زمان دوام با استفاده از بارگذاری آتش استاندارد ایزو 834 بدست آمده است. نتایج نشان داد که افزایش نسبت‌ عرض به ضخامت و نسبت بار باعث کاهش زمان دوام می‌گردد و با افزایش دما میزان تأثیر نسبت عرض به ضخامت بر روی مقاومت نهایی ستون کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Response of steel box columns in fire conditions

نویسندگان [English]

  • Mahmood Yahyai 1
  • Abbas Rezaeian 2
  • Mahdi Safaeian 3
1 Professor, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
2 Assistant Professor, Department of Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 MSc student of Structural Engineering , Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Effect of elevated temperatures on the mechanical properties of steel, brings the importance of investigating the effect of fire on the steel structures anxiously. Columns, as the main load-carrying part of a structure, can be highly vulnerable to the fire. In this study, the behavior of steel gravity columns with box cross section exposed to fire has been investigated. These kinds of columns are widely used in common steel structures design in Iran. In current study, the behavior of such columns in fire conditions is investigated through the finite element method. To perform this, the finite element model of a steel column which has been previously tested under fire condition, was prepared. Experimental loading and boundary conditions were considered in the model and was analyzed. Results were validated by experimental data and various specimens of gravity box columns were designed according to the Iran’s steel buildings code, and modeled and analyzed using Abaqus software. The effect of width to thickness ratio of column plates, the load ratio and slenderness on the ultimate strength of the column was investigated, and the endurance time was estimated under ISO 834 standard fire curve. The results revealed that an increase in width to thickness ratio and load ratio leads to reduction of endurance time and the effect of width to thickness ratio on the ultimate strength of the column decreases with temperature increase.

کلیدواژه‌ها [English]

  • Steel column
  • Local buckling
  • critical temperature
  • Finite element method
  • Fire

[1] NIST. (2008). Final report on the collapse of world trade center building7.  NIST NCSTAR 1A,  Gaithersburg, MD.

[2] Agarwal, A., Varma, A. H. and Cedeno, G. (2009). Steel columns under fire loading: Stability behavior and design. In: Annual Stability Conference. Phoenix: structural stability council, 405-429.

[3] Hong, S., Varma, A. H., Agarwal, A. and Prasad, K. (2008). Behavior of steel building structures under realistic fire loading. In: Structures Congress-Vancouver. Reston: ASCE.

[4] Franssen, J.M., Talamona, Kruppa, J. and Cajot, L.G. (1998). Stability of steel column in case of fire: experimental evaluation. ASCE Journal of Structural Engineering, 124 (2), 158-163.

[5] Heidarpour, A. and Bradford, M.A. (2007). Local buckling and slenderness limits for flange outstands at elevated temperatures. Journal ofConstructional Steel Research, 63, 591-598.

[6] Dassault  Systemes Simulia Corp. (2008). ABAQUS analysis user’s manual version 6.8.  Providence, RI, USA.

[7] Ministry of Housing and Urban Development, (2013). Iranian National Building Code, Part 10, Design and Construction of Steel Structures. Tehran, (In Persian).

 [8] ISO. (1999). ISO 834: Fire resistance test-elements of building construction. Geneva: International Organization for Standardization.

[9] Kodur, V., Dwaikat, M. and Fike, R. (2010). High-Temperature Properties of Steel for Fire Resistance Modeling of Structures. Journal of Materials in Civil Engineering, 22, 423-434.

[10] CEN. (2005). Eurocode 3:Design of steel structures, Part 1.2: general rules-structural fire design. Brussels: European Committee for Standardization.

[11] ASCE. (1992). Structural fire protection, Manual No. 78. Reston: ASCE committee on fire protection.

[12] BSI. (1990). BS 5950: Structural use  of  steelwork  in  building, Part  8: code  of practice  for fire resistance  design. London: British Standard Institution.

[13] Wang YC. (2004). Post-buckling behaviours of axially restrained and axially loaded steel column under fire conditions.  Journal of structural Engineering, ASCE, 130,371-385