ارزیابی مدل های رفتاری مناسب جهت شبیه سازی عددی آلیاژ حافظه دارشکلی نوین پایه مس

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

بیشتر مطالعات گذشته بر روی آلیاژهای حافظه دار شکلی، به یکی از پرکاربردترین نوع این آلیاژها با نام نیکل تیتانیوم Ni-Ti مربوط می­شوند. با این حال قیمت بالا و رفتار پیچیده ی این آلیاژ به دلیل وابستگی بسیار زیاد به نرخ کرنش، محققین بسیاری را به سوی تولید آلیاژهای جایگزین سوق داده است. مقاله حاضر ضمن ارزیابی خواص آلیاژ نوین پایه مس Cu-Al-Mn که توسط یکی از محققین ژاپنی به نام اراکی معرفی گردیده، قابلیت مدل­های رفتاری برای شبیه سازی عددی این آلیاژ را بررسی می­کند. آلیاژ مورد نظر ضمن بر خورداری از خواصی نظیر سوپر الاستیسیته قابل قیاس با Ni-Ti، دارای قیمت مناسب تر و وابستگی ناچیز به نرخ کرنش می­باشد. با بهره گیری از خواص این آلیاژ قابلیت سه مدل مستقل از نرخ؛ مدل گراسر کوزارلی، مدل فاگازا و مدل خودبازگشتی؛ در توصیف رفتار این آلیاژ نوپا مورد بررسی قرار گرفت. مدل گراسر کوزارلی با وجود پیچیدگی بیشترنسبت به مدل­های چند خطی فاگازا و خودبازگشتی، به دلیل داشتن پارامترهای کنترل کننده، توصیف دقیق تری از رفتار آلیاژ بویژه در نقاط شروع تبدیل دو فاز  از خود نشان داد.  همچنین پارامترهای ثابت این مدل برای توصیف رفتار میله ای 14 میلی متری از جنس آالیاژ مذکور با انجام فرایند سعی و خطا در نرم افزار متلب ارائه  گردید. نتایج شبیه سازی عددی رفتار آلیاژ Cu-Al-Mn درآزمایش کشش و شبه استاتیک توسط دو مدل فاگازا و خودبازگشتی نشان داد، این مدل­ها در کنار سادگی کاربرد و عدم نیاز به پارامترهای آزمایشگاهی پیچیده، انطباق قابل قبولی با نتایج آزمایشگاهی داشته اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of appropriate behavioral models for numerical simulation of new Cu based shape memory alloy

نویسندگان [English]

  • Mehrsa Mirzahosseini 1
  • Mohsen Gerami 2
1 PhD student, Department of Civil engineering, Semnan University, Semnan, Iran
2 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Previous studies on shape memory alloys often related to one of the most usable type called Ni-Ti. However, many researchers are trying to find alternative alloys because of high cost and complex behavior of this alloy due to the high dependence of strain rate. The present study has been evaluated on properties of new alloy Cu-Al-Mn that has been introduced by Japanese researcher Araki. Also, it has been assessed ability of behavioral models for numerical simulation. The alloy with a superelasticity comparable to Ni–Ti alloys has more suitable cost and low dependence of strain rate. Based on properties of this alloy, the ability of three rate-independent model has been evaluated using; Graesser-Cozzarelli, Fugazza, Self-centering for numerical simulation. Despite the higher complexity of Graesser-Cozzarelli model compared to multilinear Fugazza and Self-centering models, Graesser-Cozzarelli model showed a more detailed description of material behaviour especially in points of transformation of two phases, because of the controller parameters. Also constant parameters of the model were developed to describe the behavior of a bar of 14 mm Cu-Al-Mn by trial and error process in MATLAB. The results of numerical simulation of the behavior of Cu-Al-Mn alloy in tension and pseudo-static test by two models Fugazza and self-centering showed that this model with its simplicity and lack of need for complex laboratory parameters has a good conformity with experimental results.

کلیدواژه‌ها [English]

  • Shape memory alloy
  • Behavioral models
  • Graesser-Cozzarelli model
  • Fugazza model
  • Selfcentering

[1] Boroschek, R.L. Farias, G. Moroni, O. and Sarrazin, M. (2007). Effect of SMA Braces in a Steel Frame Building. Journal of Earthquake Engineering, 11 (3), 326-342.

[2] Dolce, M. and Cardone, D. (2001). Mechanical Behavior of Shape Memory Alloys for Seismic Applications 2. Austenite NiTi Bars Subjected to Tension. International Journal of Mechanical Sciences, 43 (11), 2657-2677.

[3] Wolons, D. Gandhi, F. and Malovrah, B. (1998). Experimental investigation of the pseudoelastic hysteresis damping characteristics of hape memory alloy wires. Journal of Intelligent Material Systems and Structures, 9 (2), 116-126.

[4] DesRoches, R. McCormick, C. and Delemont, M. (2004). Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering, 130 (1), 38-46.

[5] Ren, W. Li H. and Song, G. (2007). A One-Dimensional Strain-Rate- Dependent Constitutive Model for Superelastic Shape Memory Alloys. Smart Materials and Structures, 16 (1), 191-197.

[6] Tobushi, H. Shimeno, Y. Hachisuka, T. and Tanaka, K. (1998). Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy. Mechanics of Materials, 30 (2), 141-150.

[7] Dayananda, G.N. and Rao, M.S. (2008). Effect of Strain Rate on Properties of Superelastic NiTi Thin Wires. Materials Science and Engineering, 486 (1), 96-103.

[8] Soul, H. Isalgue, A. Yawny, A. Torra, V. and Lovey, F.C. (2010). Pseudoelastic Fatigue of NiTi Wires: Frequency and Size Effects on Damping Capacity. Smart Materials and Structures, 19 (8), 85006-85012.

[9] Ozbulut, O.E. and Hurlebaus, S. (2010). Neuro-Fuzzy Modeling of Temperature- and Strain-Rate-Dependent Behavior of NiTi Shape Memory Alloys for Seismic Applications. Journal of Intelligent Materials and Structures, 21 (8), 837-849.

[10] Ozbulut, O. E. Hurlebaus, S. and Desroches, R. (2011). Seismic Response Control Using Shape Memory Alloys: A Review. Structures Journal of Intelligent Material Systems, 22 (14), 1531-1549.

[11] Tanaka, K. (1986). A thermomechanical sketch of shape memory effect: onedimensional tensile behavior. Res. Mechanica, 18 (3), 251–263.

[12] Liang, C. and Rogers, C. A. (1990). One-dimensional thermo mechanical constitutive relations for shape memory material. Journal of Intelligent Material Systems and Structures, 1 (2), 207–234.

[13] Tobushi, H. Yamada, S. Hachisuka, T. Ikai, A. and Tanaka, K. (1996). Thermomechanical properties due to martensitic and R-phase transformations of TiNi shape memory alloy subjected to cyclic loadings. Journal of Smart Materials and Structures, 16 (3), 788–795.

[14] Graesser, E. J. and Cozzarelli, F. A. (1991). Shape-memory alloys as new materials for a seismic isolation. Journal of Engineering Mechanics, 117 (11), 2590–2608.

[15] Thomson, P. Balas, G. J. and Leo, P. H. (1995). The use of shape memory alloys for passive structural damping. Smart Materials and Structures, 4 (1), 36–42.

[16] Saadat, S. Noori, M. Davoodi, H. Hou, Z. Suziki, Y. and Masuda, A. (2001). Using NiTi SMA tendons for vibration control of coastal structures. Smart Materials and Structures, 10 (4), 695–704.

[17] Masuda, A. and Noori, M. (2002). Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys. International Journal of Non-Linear Mechanics, 37 (8), 1375–1386.

[18] Andrawes, B. and DesRoches, R. (2005). Unseating prevention for multiple frame bridges using superelastic devices. Smart Materials and Structures, 14 (3), 60–67.

[19] Fugazza, D. (2003). Shape-memory alloy devices in earthquake engineering: mechanical properties, constitutive modelling and numerical simulations. Master degree of earthquake engineering. European ROSE School.

 [20] Auricchio, F. and Sacco, E. (1997). A one-dimensional model for superelastic shapememory alloys with different elastic properties between austenite and martensite. International Journal of Non-Linear Mechanics, 32 (6), 1101-1114.

[21] Ozbulut, O. E. (2010). Seismic protection of bridge structures using shape memory alloy-based isolation systems against near-field earthquakes. Doctor of Philosophy. Texas A&M University.

[22] Van, de Lindt, J.W. and Potts, A. (2008). Shake Table Testing of a Superelastic Shape Memory Alloy Response Modification Device in a Wood Shearwall. Journal of Structural Engineering, 134 (8), 1343-1352.

[23] Araki, Y. Endo, T. Omori, T. Sutou, Y. Koetaka, Y. Kainuma, R. and Ishida, K. (2011). Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthquake Engineering & Structural Dynamics, 40 (1), 107–115.

[24] Sutou, Y. Omori, T. Kainuma, R. and Ishida, K. (2003). Effect of grain size and texture on superelasticity of Cu–Al–Mn-based shape memory alloys. Journal of Physics, 112, 511–514

[25] Sutou, Y. Omori, T. Yamauchi, K. Ono, N. Kainuma, R. and Ishida, K. (2005). Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Materialia, 53 (15) 4121–4133.

[26] Araki, Y. Maekawa, N. Omori, T. Sutou, Y. Koetaka, Y. Kainuma, R. and Ishida, K. (2012). Rate-dependent response of superelastic Cu-Al-Mn alloy rods to tensile cyclic loads. Smart Materials and Structures, 21 (3) 032002- 032009.

[27] Araki, Y. Shrestha, K.C. Maekawa, N. Koetaka, Y. Yoshida, N. Omori, T. Sutou, Y. Kainuma, R. Ishida, K. (2012). Cu-Al-Mn Super-elastic Alloy Bars as Dissipative Brace System in Structural Steel Frame. In: The 15th World Conference on Earthquake Engineering, Lisbon.

[28] Araki, Y. Maekawa, N. Shrestha, KC. Yamakawa, M. Koetaka, Y. Omori, T. Kainuma, R. (2014). Feasibility of tension braces using Cu–Al–Mn superelastic alloy bars. Structural Control and Health Monitoring, 21 (10), 1304–1315.

[29] Araki, Y. Maekawa, N. Shrestha, KC. Yamakawa, M. Koetaka, Y. Omori, T. Kainuma, R. (2015). Shaking table tests of steel frame with superelastic Cu–Al–Mn SMA tension braces. Earthquake Engineering & Structural Dynamics, 45 (2), 297–314.

[30] Erochko, J A. (2013). Improvements to the design and use of post-tensioned self-centering energy-dissipative (SCED) braces. Doctor of Philosophy. University of Toronto.

[31] Moradi, S. Alam, S.  Asgarian, B. (2014). Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces. The journal of Tall and Special Building, 23 (18), 1406–1425.

[32] Asgarian, B. Moradi, S. (2011). Seismic response of steel braced frames with shape memory alloy braces. Journal of Constructional Steel Research, 67 (1), 65-74.

[33] McCormick, J. DesRoches, R. Fugazza, D. and Auricchio, F. (2006). Seismic vibration control using superelastic shape memory alloys. Journal of Engineering Materials and Technology, 128 (3) 294-301.

[34] McCormick, J. DesRoches, R. Fugazza, D. and Auricchio, F. (2007). Seismic Assessment of Concentrically-Braced Steel Frames Using Shape Memory Alloy Braces. Journal of Structural Engineering, 133 (6), 863-870.