بررسی تاثیر آجرچینی بر روی مقاومت برشی دیوار مصالح بنایی در مقیاس مزو

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی سازه، دانشگاه یزد، یزد، ایران

2 استادیار، دانشگاه یزد، یزد، ایران

3 دانشیار، دانشگاه یزد، یزد، ایران

چکیده

مصالح بنایی از قدیمی‌ترین مصالح ساختمانی هستند که در اکثر سازه‌های تاریخی موجود و بسیاری از سازه‌های جدید مورد استفاده قرار گرفته‌اند. در این مطالعه با بهره‌گیری از مقیاس مزو، به بررسی رفتار دیوار تحت بارگذاری یکنواخت توسط نرم‌افزار Abaqus پرداخته شده است. مهم‌ترین عامل در تعیین رفتار سازه بنایی درز‌های ناپیوستگی است که با‌عنوان رابط بین واحدها و ملات شناخته می‌شود. در اکثر مطالعات انجام گرفته پیشین برای مدل‌سازی المان رابط بین واحد و ملات از المان چسبنده استفاده شده است. در این مطالعه با حذف این المان‌ها و اختصاص دادن ویژگی‌های آن‌ها به سطوح واحدهای بنایی، مشاهده شد که ضمن کاهش حجم محاسبات مورد‌نیاز، نتایج انطباق خوبی با مطالعات تجربی دارد. یکی دیگر از عوامل مهم در رفتار دیوارهای بنایی، نحوه چیدمان واحدهای بنایی در کنار یک‌دیگر است. در این مطالعه تاثیر هم‌پوشانی ردیف‌های واحدهای بنایی بر روی مقاومت برشی و مد خرابی دیوار مصالح بنایی بررسی شده است. در انتها مشاهده شد که با افزایش هم‌پوشانی، مقاومت دیوار بنایی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the Arrangement Effect of Units on the Shear Strength Masonry Walls in Meso-Scale

نویسندگان [English]

  • M. Sepehrinia 1
  • H. Rahimi bondarabadi 2
  • B. Ahmadi Nadoshan 3
1 MSc student, Yazd University, Yazd, Iran
2 Assistant professor, Yazd University, Yazd, Iran
3 Associate Professor, Yazd University, Yazd, Iran
چکیده [English]

Masonry is one of the oldest building materials which have been used in most heritage structures and new construction. In this study by using a meso-scale finite element model, the behavior of masonry walls is investigated under monotonic loading by Abaqus software. The most important factor in determining the behavior of masonry structures is discontinuity joints which are interface between unit and mortar. In most previous studies cohesive element is used for modeling of interface element. But in this study, by ignoring cohesive elements that represents the interface element between unit and mortar in masonry structures, it can be seen that while reducing the computational requirements, the results are in good agreement with experimental studies. Another important factor in the behavior of masonry walls is the arrangement of masonry units. In this study the overlapping effect of rows of units on the shear strength and failure mode of masonry walls have been investigated. As a result, it was observed that by increasing overlap, shear resistance of masonry walls increased.

کلیدواژه‌ها [English]

  • Masonry structures
  • Numerical modeling
  • Meso-scale
  • Interface element
  • Arrangement

[۱] طایفی نصرآبادی، ع.، رشیدی مهرآبادی، م. (1387)، "روش­های مقاوم­سازی و بهسازی سازه­های بنایی و خشتی در برابر زلزله"، مجله مهندسی عمران دانشگاه آزاد اسلامی، سال 1، شماره 2.

[2]Dolatshahi, K. M., & Aref, A. J. (2011),” Two-dimensional computational framework of meso-scale rigid and line interface elements for masonry structures”, Engineering Structures, 33(12), 3657-3667.

[۳] حجازی، م.، قمری، م. (1391)، "بررسی دو روش مدل­سازی ماکرو و میکرو در سازه­های بنایی"، اولین کنفرانس ملی بنای ماندگار، مشهد مقدس.

[4]Korany, Y., and EL-Haggar, S. (1997), “Mechanics and modeling of URM structures”, The Masonry Society Journal, Vol. 19, No. 1, PP. 97-106.

[5]Aref, A. J., & Dolatshahi, K. M. (2013), “A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures”, Computers & Structures, 120, 9-23. 

[6]Ali, S. S., & Page, A. W. (1988), “Finite element model for masonry subjected to concentrated loads”, Journal of structural engineering, 114(8), 1761-1784.

[7]Page, A. W. (1978), “Finite element model for masonry”, Journal of the Structural Division, 104(8), 1267-1285.

[8]Lourenco, P. B. (1996), “Computational strategies for masonry structures”, TU Delft, Delft University of Technology.

[9]Lourenço, P. B., & Rots, J. G. (1997), “Multisurface interface model for analysis of masonry structures”, Journal of engineering mechanics, 123(7), 660-668.

[10]Oliveira, D. V., & Lourenço, P. B. (2004), “Implementation and validation of a constitutive model for the cyclic behaviour of interface elements”, Computers & structures, 82(17), 1451-1461.

[11]Rafsanjani, S. H., Lourenço, P. B., & Peixinho, N. (2015), “Dynamic interface model for masonry walls subjected to high strain rate out-of-plane loads”, International Journal of Impact Engineering, 76, 28-37.

[12]Wei, X., & Stewart, M. G. (2010), “Model validation and parametric study on the blast response of unreinforced brick masonry walls”,  International journal of impact engineering, 37(11), 1150-1159.

[13]Bolhassani, M., Hamid, A. A., Lau, A. C., & Moon, F. (2015), “Simplified micro modeling of partially grouted masonry assemblages”, Construction and Building Materials, 83, 159-173.

[14]Abaqus Ins. ABAQUS Analysis user Manual, Version 6.12.

[15]Dugdale, D. S. (1960), “Yielding of steel sheets containing slits”, Journal of the Mechanics and Physics of Solids, 8(2), 100-104.

[16]Barenblatt, G. I. (1962), “The mathematical theory of equilibrium cracks in brittle fracture”, Advances in applied mechanics, 7(1), 55-129.

[17]Needleman, A. (1987), “A continuum model for void nucleation by inclusion debonding”, Journal of applied mechanics, 54(3), 525-531.

[18]Raijmakers, T. M. J. (1992), “Deformation controlled tests in masonry shear walls”,  report B-92-1156.

[19]Vermeltfoort, A. T., & Raijmakers, T. M. J. (1993), “Deformation controlled tests in masonry shear walls, Part 2”, Eindhoven University of Technology: Delft, The Netherlands.