الگوی توزیع ارتفاعی بار زلزله برای قاب‌های خمشی فولادی با درنظرگرفتن رفتار غیرخطی اعضا

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی

2 کارشناس ارشد مهندسی زلزله، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی

چکیده

در تحلیل استاتیکی معادل، نیروی زلزله، بر اساس الگوی ساده شده در ارتفاع سازه توزیع می‌شود. هرچه این توزیع به واقعیت نزدیک‌تر باشد دقت تحلیل و طراحی سازه بیشتر خواهد بود. در این تحقیق با در نظر گرفتن رفتار غیرخطی اعضا، یک رابطه جدید برای توزیع بارگذاری زلزله در ارتفاع پیشنهاد شده است. برای نیل به این هدف چندین قاب خمشی 3، 5، 7، 10 و 15 طبقه که بر اساس آیین‌نامه‌های رایج کشور طراحی شدند انتخاب گردیدند و توزیع بارگذاری ارتفاعی آن‌ها با استفاده از تحلیل تاریخچه زمانی غیرخطی فزاینده تعیین شد. در تحلیل قاب‌ها هفت رکورد شتاب زمان اصلاح شده مورد استفاده قرار گرفت. برای تعیین توزیع ارتفاعی بار زلزله، نخست برش طبقات مختلف سازه به‌دست آمد. آنگاه از تفاضل نیروی برشی موجود در طبقات مجاور، نیروی وارد بر طبقه که بیانگر توزیع ارتفاعی بار زلزله است محاسبه شد. بر اساس نتایج حاصل از تحلیل تمامی قاب‌ها تحت رکوردهای انتخابی، الگوی توزیع ارتفاعی زلزله برای قاب‌های خمشی پیشنهاد شد. نتایج نشان می‌دهد که رابطه پیشنهادی می‌تواند الگوی مناسبی برای توزیع ارتفاعی بار زلزله در تحلیل استاتیکی معادل با در نظر گرفتن رفتار غیرخطی اعضا باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Altitudinal Distribution Pattern of Earthquake Load for Moment Resisting Frames Considering Nonlinear Behavior of Members

نویسندگان [English]

  • Mussa Mahmoudi 1
  • Mohammad Amin Fageh Mineh 2
1 Associated Professor, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
2 M. Sc. in Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
چکیده [English]

This study aims to investigate distribution of earthquake lateral load along the building’s height of moment resisting frames, considering the structure nonlinear effects. For this purpose several case study steel frames including 3, 7, and 15 story frame -which are common for urban areas- are considered. These frames are designed according to Iranian standard codes for steel buildings and Iranian seismic code of practice (Standard No 2800), using the standard equivalent static procedure, for a soil class of II. Thereafter considering seven earthquake ground-motion scaled records, a nonlinear dynamic analysis for each of frames was performed and distribution pattern of shear force was extracted in frame elevation. In order to take out a certain and reliable lateral load pattern, the incremental dynamic analysis is used and results are averaged. Eventually considering the effective factors in distribution of earthquake lateral load along the height, the extracted load pattern is simplified and formulated to be practicable. The presented equation shows 95% correspondence with the dynamic analysis results.

کلیدواژه‌ها [English]

  • Altitudinal distribution of earthquake load
  • Steel Moment Resisting Frame
  • Nonlinear dynamic analysis
  • IDA

[1] کرمی محمدی، ر.، شرقی، ا.، (1393)، طراحی لرزه‌ای قاب‌های خمشی بر اساس الگوهای بار جانبی گوناگون و مقایسه آن‌ها با طرح بهینه، مجله علمی پژوهشی عمران مدرس، دوره چهاردهم، شماره 1 ، صفحات 73 تا 84 ، بهار1393.

[2] International Council of Building Officials, Uniform building code UBC, Structural engineering design provision, 1997

[3] Chopra, A., Dynamic of structures: Theory and application to earthquake, 2nd edition, Prentice Hall Inc., London, 2001.

[4] Lee, S.S., and Goel, S.C., Performance based seismic design of structure using target drift and yield mechanism, US-Japan seminar on Advanced stability and seismicity concept for performance based design of steel and composite structure, Kyoto, Japan, 2001.

[5] Karami Mohamadi, R., EI-Naggar, M.H., and Moghadam, H., Optimum Strength distribution seismic resistance shear-building, International jornal of solid and structure, 41,p 6597-6612, 2004.

[6]  Moghadam, H., and Hajirasoliha, I., Toward more rational criteria for determination of design earthquake force, International journal of solid and structure, 43, p 2631-2645, 2006

[7] Chao, Sh., Goel, S.C.,and Lee, S.S., A Seismic Design Lateral Force Distribution Based on Inelastic State of Structures. Earthquake Spectra: August 2007, Vol. 23, No. 3, pp. 547-569, 2007.

[8] Deguchi, Y., Kawashima, T., Yamanari, M., and Ogawa, K., Seismic design load distribution in steel frames, 14th World Conference on earthquake engineering, Beijing , China, 2008.

[9] Hajirasouliha, I. and Moghaddam, H., A new lateral force distribution for seismic design of structures, J. Structural Eng., 135 (8), 906-915.

[10] Hajirasouliha, I., Pilakoutas, K., General seismic load distribution for optimum performance-based design of shear-buildings, Journal of Earthquake Engineering, 16(4), 443-462, 2012.

[11] Moghaddam, H., Hosseini Gelekolai, S.M., Hajrasouliha, I., Tajalli, F., Evaluation of Various Proposed Lateral Load Patterns for Seismic Design of Steel Moment Resisting Frames, The 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.

[12] Kim S.E.., Lee. D.H., Cuong N.H., Shaking table tests of a two-story unbraced steel frame, journal of constructional steel Research, 63, p412-421, 2007.

[13] Karami Mohamadi, R., Optimum distribution of dynamic characteristics within the structure to reduce seismic damage, PH.D. dissertation, Civil Engineering department, Sharif University of Technology, 2001.

[14] American Institute of Steel Construction (AISC), ANSI/AISC 360-10, Specification for structural steel buildings, Chicago, 2010.

[15] معاونت برنامه‌ریزی و نظارت راهبردی رئیس‌جمهور، دستورالعمل بهسازی لرزه‌ای ساختمان‌های موجود، نشریه 360، 1392.

[16] مرکز تحقیقات ساختمان و مسکن، طراحی ساختمان‌ها در برابر زلزله، ویرایش چهارم (استاندارد 2800)، 1393.

[17] مرکز تحقیقات ساختمان و مسکن، طراحی ساختمان‌ها در برابر زلزله، ویرایش سوم (استاندارد 2800)، 1384.

[18] Computers and Structures Inc., CSI Analysis Reference Manual for SAP2000, ETABS, SAFEand CSiBridge, 2013.

[19] SIMULIA, Abaqus analysis user’s manual, Version 6.11., USA, 2011.