بهینه سازی مخازن بتنی نیمه مدفون نگهدارنده سیالات توسط الگوریتم اجتماع ذرات و غلاف تقویتی منشوری

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی امیرکبیر

2 دانشجوی دکتری مهندسی و مدیریت ساخت، دانشکده مهندسی عمران، دانشگاه صنعتی امیرکبیر

چکیده

مخازن بتنی یکی از سازه‌های مهم در نگهداری سیالات به منظور ذخیره‌سازی و استفاده در شبکه‌های انتقال سایلات می‌باشند. این مخازن مستطیلی معمولا دارای اشکال ثابتی بوده و با توجه به میزان دبی ورودی، شرایط زمین ساختگاه، نوع بار استاتیکی و دینامیکی طراحی و محاسبه می‌گردند. در این تحقیق بر اساس آنالیزهای انجام شده در ابتدا المان‌های جداره‌های مخزن تیپ شده و سپس میزان دامنه ضخامت پوسته و سطح مقطع میلگرد مصرفی حداقل و حداکثر در هر یک از المان‌ها بر اساس میزان تنش حداکثری مشخص شده‌اند. در مرحله بعد برپایه آنالیز مخزن و به کمک الگوریتم رابطپارامتریک شناسایی سیستمسازه‌ها اطلاعات مربوطه با کد الگوریتم اجتماع ذرات که یک الگوریتم جستجوی اجتماعی می‌باشد ترکیب شده تا میزان ضخامت بهینه مقاطع المان‌های پوسته مخزن به همراه میزان بهینه سطح مقطع میلگردهای مصرفی مشخص شوند. با توجه به مدل‌های خطی ریاضی بسیار پیچیده برای جانمایی صحیح و زوایای مربوط به زنجیره‌ای از غلاف‌های تقویتی پیرامونی که باعث بهسازی لرزه‌ای سازه می‌شوند، یک رابطه دو طرفه بین نرم افزار مدل سازی و کد الگوریتم اجتماع ذرات در جهت بهینه سازی انتخاب گردیده است. در انتها میزان مقایسه‌ای وزن بهینه سازی شده مخزن بتنی توسط غلاف تقویتی پیرامونی با روش‌های متداول مورد ارزیابی قرار گرفته است که نشان دهنده کاهش 19% وزن میلگرد مصرفی، 20% وزن بتن مصرفی و حداقل صرفه جویی13%  هزینه ساخت بر اساس آیتم‌های فهرست بهاء در یک مخزن شاخص بتنی 000/10 متر مکعبی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Reinforced Concrete Reservoir with Circumferential Stiffeners Strips by Particle Swarm Algorithm

نویسندگان [English]

  • GholamReza Havaei 1
  • Saeed Kia 2
1 Assistant Professor, Department of Civil Engineering, Amirkabir University of Technology
2 PhD Student in Construction Engineering and Management, Department of Civil Engineering, Amirkabir University of Technology
چکیده [English]

Reinforced concrete reservoirs (RCR) have been used extensively in municipal and industrial facilities for several decades. The design of these structures requires that attention be given not only to strength requirements, but to serviceability requirements as well. These types of structures will be square, round, and oval reinforced concrete structures which may be above, below, or partially below ground. The main challenge is to design concrete liquid containing structures which will resist the extremes of seasonal temperature changes, a variety of loading conditions, and remain liquid tight for useful life of 50 to 60 years. In this study, optimization is performed by particle swarm algorithm basd on structural design. Firstly by structural analysis all range of shell thickness and areas of rebar find. In the second step by parameter identification system interchange algorithm, source code which developed in particle swarm algorithm by MATLAB software linked to analysis software. Therefore best and optimized thicknesses and total area of bars for each element find. Lastly with circumferential stiffeners structure optimize and show 19% decrease in weight of rebar, 20% decrease in volume of concrete, and 13% minimum cost reduction in construction procedure compared with conventional 10,000 m3 RCR structures.

کلیدواژه‌ها [English]

  • Stiffeners Strips
  • Particle Swarm Algorithm
  • Reinforced Concrete Reservoirs
  • optimization
[1] A.R Lloyd, W.S Doyle (1978), “Computer-aided design of circular liquid retaining structures in accordance with BS5337”, Advances in Engineering Software, Vol. 3, No. 1, Jan 1981, pp. 35-41.

[2] Shahab Dean Mohaghegh (2011), “Reservoir simulation and modeling based on artificial intelligence and data mining (AI&DM)”, Journal of Natural Gas Science and Engineering, Vol. 3, No. 6, pp. 697-705.

[3] J.Z. Chen, M.R. Kianoush (2009), “Generalized SDOF system for seismic analysis of concrete rectangular liquid storage tanks”, Engineering Structures, Vol. 31, No. 10, pp. 2426-2435.

[4] Armin Ziari, M. Reza Kianoush (2009), “Investigation of flexural cracking and leakage in RC liquid containing structures”, Engineering Structures, Vol. 31, No. 5, pp. 1056-1067.

[5] Sanayei, M., Santini Bell, E., and Rao, N. (2007), “Model Updating of UCF Benchmark Model Using PARIS,” International Modal Analysis Conference, IMAC XXV, Orlando, Florida, February 19-22.

[6] Sanayei, M., Wadia-Fascetti, S., Arya, B.G, and Santini, E.G (2001), “Significance of Modeling Error in Structural Parameter Estimation”, Special issue of the International Journal of Computer-Aided Civil and Infrastructure Engineering devoted to Health Monitoring of Structures, Vol. 16, pp. 12-27, pp. 12-27.

[7] Yeh-Lianghsu (1994), “A review of structural shape optimization, Computers in Industry”, Vol. 25, No. 1, pp. 3-13.

[8] R.E. Perez, K. Behdinan (2007), “Particle swarm approach for structural design optimization, Computers & Structures”, Vol. 85, Nos. 19–20, pp. 1579-1588.

[9] K.W. Chau, S.T. Lee (1991), “Computer-aided design package RCTank for the analysis and design of reinforced concrete tanks”, Computers & Structures, Vol. 41, No. 4, pp. 789-799.

[10] V. Thevendran, David P. Thambiratnam (1987), “Optimal shapes of cylindrical concrete water tanks”, Computers & Structures, Vol. 26, No. 5, 1987, pp. 805-810.

[11] E. Hinton, N.V.R. Rao (1993), “Structural shape optimization of shells and folded plates using two-noded finite strips”, Computers & Structures, Vol. 46, No. 6, 17, pp. 1055-1071.

[12] Donald W. White, John F. Abel (1989), “Testing of shell finite element accuracy and robustness, Finite Elements in Analysis and Design”, Vol. 6, No.2, pp. 129-151.

[13]  Richard H. MacNeal, Robert L. Harder (1985), “A proposed standard set of problems to test finite element accuracy”, Finite Elements in Analysis and Design, Vol. 1, No. 1, April 1985, pp. 3-20.

[14] Xiaolin Peng (1998), “Application of generalized function theory on the complete solutions of plates and shells, Applied Mathematical Modelling”, Vol. 12, No. 3, pp. 321-327.

[15] Shyam Sundar, Alok Singh (2012), “A swarm intelligence approach to the early/tardy scheduling problem, Swarm and Evolutionary Computation”, Vol. 4, pp. 25-32.

[16] N.V.R. Rao, E. Hinton (1994), “Analysis and optimization of prismatic plate and shell structures with curved plan form II Shape optimization”, Computers & Structures, Vol. 52, No. 2, pp. 341-351.

[17] Kang Seok Lee, Zong Woo Geem (2004), “A new structural optimization method based on the harmony search algorithm”, Computers & Structures, Vol. 82, No. 9–10, April 2004, pp. 781-798.

[18] A.A. Mousa, M.A. El-Shorbagy, W.F. Abd-El-Wahed (2012), “Local search based hybrid particle swarm optimization algorithm for multiobjective optimization, Swarm and Evolutionary Computation”, Vol. 3, pp. 1-14.

[19] R.H. MacNeal, R.L. Harder, A proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Des. 1 (1985) 3-20.

[20] Timoshenko, S., S. Woinowsky-Krieger, and S. Woinowsky-. Krieger. Theory of Plates and Shells. Second. New York, N.Y.: McGraw-Hill, 1959. Print.

[21] Saeed Kia, Mohammad Reza Ghasemi (2012), "Durability-Based Optimization of Reinforced Concrete Reservoirs Using Artificial Bee Colony Algorithm." Global Journal of Researches in Engineering, 12.3-E.

[22] Saeed Kia, Mohammad Reza Ghasemi (2012), “Modeling and shape optimization of reinforced concrete reservoirs using Particle Swarm Algorithm." International Journal of Civil & Structural Engineering, Vol. 2 Issue 4, p1107.

[23] Computers and Structures Inc., Sap2000 - Integrated Structural Analysis and Design Software Analysis User's Manual, Version 17, 2014.

[24] Computers and Structures Inc., Sap2000 - Integrated Structural Analysis and Design Software, Volume VII: Shells, Version 17, 2014.