بررسی عددی استفاده از پیش دال‌های بتنی در ناحیه انتقال خطوط بالاستی به آبروهای بتنی خطوط راه آهن سریع السیر

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی راه آهن، دانشگاه علم و صنعت، تهران، ایران

2 کارشناس ارشد مهندسی عمران، دانشکده مهندسی راه آهن، دانشگاه علم و صنعت، تهران، ایران

3 دانشجوی دکتری مهندسی عمران، دانشکده مهندسی راه آهن، دانشگاه علم و صنعت، تهران، ایران

چکیده

از جمله مسائل مطرح در بهره برداری از خطوط راه آهن سریع السیر، اجتناب از وقوع تغییرات ناگهانی در سختی خط‌‌ می‌باشد. محل آبروها و پل ها، شایع ترین نقاط تغییر ناگهانی سختی خط در طول مسیرهای راه آهن سریع السیر‌‌ می‌باشد. یکی از مهمترین روش‌های اعمال تدریجی سختی در این نقاط، ساخت پیش دال‌های بتنی به عنوان ناحیه انتقال‌‌ می‌باشد. بنابراین در این مقاله سعی گردیده تا این موضوع با انجام مدل سازی عددی مورد مطالعه قرار گیرد. برای این منظور یک خط بالاستی همراه با یک آبرو بتنی مشابه با آبروهای واقع در مسیر راه آهن سریع السیر تهران- قم- اصفهان به طول 6.6 متر مدلسازی گردیده و تاثیر وجود پیش دال‌های بتنی در حدفاصل خط بالاستی و آبرو مورد بررسی قرار گرفته است. در این مدلسازی خط بالاستی و اجزای آن شامل پد زیر ریل، تراورس، بالاست، بستر و زمین بصورت مجموعه ای از سیستم‌های جرم-فنر-میراگر مدل گردیده و ریل ها، آبرو و پیش دال‌های بتنی بصورت المان‌های تیر اویلر-برنولی شبیه سازی شده‌اند. سپس رفتار دینامیکی خط ریلی و اجزای آن با عبور دسته بار متحرک مشابه یک ناوگان سریع السیر متداول مورد بررسی قرار گرفته است. در این راستا بر روی پارامتر هائی از قبیل سرعت وسیله نقلیه، ضخامت دال‌خط‌ها، میرایی و سختی خط تحلیل حساسیت صورت گرفته است. نتایج تحلیل‌ها بیانگر آن است که با افزایش سختی و میرایی خط، نیروی ایجاد شده در بالاست‌‌، شتاب‌ها و نشست‌های خط بویژه در قسمت خط با پیش دال‌های بتنی کاهش‌‌ می‌یابد که این تاثیر در میرایی‌های بالاتر از KNsec/m 200 و سختی خط در محدوده MN/m 120 تا MN/m180 قابل توجه‌‌ می‌باشد. همچنین نتایج نشان‌‌ می‌دهد که افزایش ضخامت پیش دال ‌ها تاثیر به سزایی بر بهبود رفتار خط در سرعت‌های بالا بویژه در سرعت 340 کیلومتر بر ساعت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical investigation of the behavior of approach slabs in transition zone of ballasted track to box culvert in high-speed railway lines

نویسندگان [English]

  • Morteza Esmaeili 1
  • Mehdi Kamali 2
  • Hamidreza Heydari-Noghabi 3
1 Associate professor, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
2 MSc student of Railway Track Engineering, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
3 PhD student of Railway Track Engineering, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

One of the most important issues in operation of high-speed railway tracks is avoiding to sudden variation of the track stiffness. Culverts and bridges are common areas which this problem is occurred along the railway lines. One of the method for applying the gradual variation of the track stiffness in these areas is using the approach slabs in transition zone. Therefore, in this research it has attempted to study this problem using numerical simulation. In this regard, a typical culvert of Tehran-Qom-Esfahan high-speed railway line with 6.6 m length was simulated. Then for studying the effect of transition zones, an approach slab includes of three parts with 6m length and various thicknesses simulated by FE model. In this model the ballasted track and its components such as railpads, sleepers, ballast and subgrade were modeled as lumped mass-dashpot-spring systems and the rails, approach slabs and culvert were modeled by Euler-Bernoulli beam elements. Then the dynamic behavior of the transition zone investigated under the passing of the moving loads same as the axle loads of the ICE high speed train. In this matter a series of sensitivity analyses were carried out on some parameters such as vehicle speed, approach slab thickness as well as damping and stiffness of track. Consequently, the achieved results show that the increasing of damping and stiffness of the track cause to the ballast forces increased and in other side it causes to the acceleration and settlement of the ballasted track and the approach slabs decreased. These aforementioned effects are more obvious in damping values higher than 200 kN.sec/m and the track stiffness values in the range of 120 MN/m to 180 MN/m. Moreover, it was understood that increasing the approach slabs thickness has remarkable effect on improving the dynamic behavior of the transition zone especially in speeds more than 340 km/hr.

کلیدواژه‌ها [English]

  • transition zone
  • Approach slabs
  • Box culvert
  • High speed railway lines
  • Numerical modeling

[1] Woodward, P.K. and Banimahd, M.; "3-Dimentional finite element modeling of railway transitions"; XiTRACK, Proceedings 9th International Conference on railway engineering London (2007).

[2] Kerr, A.D.; “Fundamentals of Railway Track Engineering”; Simmons-Boardman Books, Inc. (2003).

[3] Li, D. and Davis, D.; "Transition for railroad bridge approach"; Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131 (2005) 1392-1398.

[4] Woodward, P.K., Boyd, P., Banimahd, M.; "Reinforcement of tunnel railway track from floating to fixed geometry in a day"; XiTRACK, Proceedings 9th International Conference on railway engineering London (2007).

[5] Woodward, P.K., Boyd, P., Banimahd, M. and Spiers J.; "Reinforcement of KeadbyCanal drawbridge", XiTRACK, Proceedings 9th International Conference on railway engineering London (2007).

 [6] Holscher, P. , Meijers P.; “Literature study of knowledge and experience of transition zones:; Technical report, GeoDelft, (2007).

[7] Sasaoka, C. D., Davies D.; “Implementing track transition solutions for heavy axle load service”; AREMA (2005)..

[8] Hyslip, J. P., Li D., McDaniel C. R.; “Railway bridge transition case study. In E. Tutumluer and L. Al-Qadi (Eds.)”; Proceedings of the 8th International Conference Bearing Capacity of Roads, Railways and Airfields, CRC Press (2009) 1341–1348..

 [9] AREMA; “Portfolio of Trackwork Plans”; American Railway Engineering and Maintenance-of-Way Association, Plan NO. 913-52 (2005).

[10] Sussman, T. R. and Selig. E. T.; “Track Component Contributions to Track Stiffness”; E. T. Selig, Inc. Amherst, MA. (1998)

[11] Li, D., Rose, J., Lees, H. and Davis, D.; “Hot-Mix Asphalt Trackbed Performance Evaluation at Alps, New Mexico”; Association of American Railroads, Transportation Technology Center, In Technology Digest TD 01-015 (2001).

[12] Kerr, A. D. and Moroney, B. E.; “Track Transition Problems and Remedies”; In Bulletin 742, American Railway Engineering Association (1993) 267–298.

[13] Quade, P. B. and Douglas; “TCRP Report 57: Track Design Handbook for Light Rail Transit”; Transportation Research Board”, National Research Council, Washington, DC (2000).

[14] Read, D. and Li, D.; "Research results digest 79- Design of Track Transitions"; Transportation Technology Center (TTCI), Inc (2006).

 [15] Coelho, B.E., Priest, J., Hölscher, P. and Powrie, W.; “Monitoring of transition zones in railways”; In M. Forde (Ed.), Railway engineering‌ Engineering Technics Press (2009).

[16] Coelho, B.E., Hölscher, P. and Barends, F. B. J.; “Dynamic behaviour of transition zones in railways”; Proceedings of the 21st European Young Geotechnical Engineers' Conference, Rotterdam (2011) 133-139.

[17] Coelho, B.E., Hölscher, P., Priest, J., Powrie, W. and Barends, F. B. J.; “An assessment of transition zone performance”; Proc. IMechE Part F: J. Rail and Rapid Transit, 224, (2010) 1-11.

[18] Zakeri J. Ali. and Ghorbani V.; “Investigation on dynamic behavior of railway track in transition zone “; Journal of Mechanical Science and Technology, 25, No. 2, (2011) 287-292.

[19] Coelho, B.E.; “Dynamics of railway transition zones in soft soils”; MSc. Thesis, Delft University of Technology (2010).

 [20] Esmaeili M. and Heydari-Noghabi, H.; “Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-DimensionalSpace”; Journal of Transportation Engineering, Volume 139, Issue 7, (2013) 697–708.

 [21] Insa, R., Salvador, P., Inarejos J. and Roda, A.; “Analysis of the influence of under sleeper pads on the railway vehicle/track dynamic interaction in transition zone”; Journal of Rail and Rapid Transit , Vol. 226, No.4, (2012)  409-420.

[22] Intercity-Express 3 (ICE 3), High Speed Trainset Velaro, Siemens Transportation Systems; "http://www.siemens.com".