تحلیل آسیب‌پذیری لرزه‌ای دیوارهای ساحلی وزنی کیسونی همراه با خاکریز بهسازی‌شده با استفاده از منحنی‌های شکنندگی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه مهندسی ژئوتکنیک و حمل و نقل، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانش‌آموخته کارشناسی ارشد گروه مهندسی ژئوتکنیک و حمل و نقل، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

هدف از مطالعه عددی حاضر، بررسی آسیب‌پذیری لرزه‌ای دیوارهای ساحلی وزنی کیسونی با خاکریز بهسازی شده مستقر بر بستر متراکم غیرروان‌گرا است. در این راستا، تأثیر الگوهای مختلف بهسازی خاکریز مستعد روان‌گرایی بر پاسخ لرزه‌ای این نوع دیوار‌ها ارزیابی و با یکدیگر مقایسه می‌شود. برای این منظور، از روش تفاضل محدود صریح لاگرانژی و مدل رفتاری UBCSAND برای خاکریز دانه‌ای غیرچسبنده مستعد روان‌گرایی استفاده می‌شود. مدل رفتاری به‌کار رفته با سخت‌شوندگی مختلط سینماتیک و همسانگرد می‌تواند رفتار چرخه‌ای خاک و همچنین افزایش فشار آب حفره‌ای در طی بارگذاری‌های لرزه‌ای را به‌نحو مناسبی لحاظ نماید. به‌علاوه، اندرکنش دیوار کیسونی و خاک اطراف در مدل‌سازی‌های عددی درنظر گرفته می‌شود. ابتدا، یک مدل عددی پایه دو بعدی از دیوار ساحلی کیسونی ایجاد و پاسخ آن براساس مشاهدات آزمایشگاهی متناظر اعتبارسنجی می‌شود. سپس، با انجام تحلیل‌های دینامیکی غیرخطی تاریخچه زمانی تحت اثر رویدادهای لرزه‌ای با سطوح مختلف خطر، 11 سری منحنی شکنندگی لرزه‌ای احتمالاتی برای دیوار ساحلی کیسونی با 10 الگوی متفاوت بهسازی به‌روش جایگزینی برای خاکریز مستعد روان‌گرایی و همچنین برای دیوار ساحلی کیسونی فاقد بهسازی در چارچوب طراحی بر مبنای عملکرد توسعه داده می‌شوند. براساس احتمال‌های آسیب دیوار با الگوهای مختلف بهسازی در سطوح لرزه‌ای متفاوت و مساحت ناحیه‌های بهسازی شده، میزان اثربخشی و بازده الگوهای پیشنهادی بر بهبود عملکرد لرزه‌ای دیوار کیسونی مقایسه می‌شوند. نتایج حاصل نشان می‌دهند، بهسازی خاکریز دیوار سبب بهبود عملکرد و کاهش آسیب‌پذیری لرزه‌ای آن در تمامی سطوح لرزه‌ای می‌شود. به‌کارگیری الگوهای بهسازی خاکریز، جابجایی افقی ماندگار بالای دیوار پس از زلزله را به‌طور میانگین بین 40 تا 73 درصد کاهش می‌دهد. مقایسه الگوهای بهسازی خاکریز مستعد روان‌گرایی در پشت دیوار ساحلی کیسونی مستقر بر بستر متراکم غیرروان‌گرا نشان می‌دهد، الگوی‌های با هندسه مثلثی و ذوزنقه‌ای با قاعده در پایین بیش‌ترین اثربخشی مثبت را بر کاهش تغییرمکان افقی دیوار و کاهش احتمال آسیب لرزه‌ای آن دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Vulnerability Analysis of Caisson-type Gravity Quay Walls with Improved Backfill Using Fragility Curves

نویسندگان [English]

  • Babak Ebrahimian 1
  • Amir Reza Zarnousheh Farahani 2
1 Assistant Professor of Geotechnical and Transportation Engineering Division, Faculty of Civil, Water and Environmental Engineering,, Shahid Beheshti University (SBU), Tehran, Iran
2 Graduate M.Sc. Student, of Geotechnical and Transportation Engineering Division, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University (SBU), Tehran, Iran
چکیده [English]

The main objective of the present numerical study is to investigate the seismic vulnerability of the caisson-type gravity quay walls with improved backfill soil located on a non-liquefiable dense seabed soil layer. In this regard, the effects of different improvement patterns applied to the liquefiable backfill on the seismic response of the wall are evaluated and compared. For this purpose, the Lagrangian explicit finite difference method and the UBCSAND constitutive model are utilized. First, a basic two-dimensional numerical model of the caisson quay wall is created and its response is validated against the corresponding experimental observations. Afterward, by performing non-linear time history dynamic analysis under the effect of various seismic events with different risk levels, 11 series of probabilistic seismic fragility curves are developed within the performance-based design framework for the caisson quay walls with 10 different backfill improvement patterns and also for the caisson quay wall without improvement. According to the damage probability of the wall with various improvement patterns at different seismic levels as well as the area of the improved zone behind the wall, the effectiveness and efficiency of the proposed improvement patterns on enhancing the seismic performance of the system are evaluated and discussed. The results show that the backfill replacement and modification improve the seismic performance of the wall and reduce its vulnerability in all seismic levels. By applying different backfill improvement patterns, the permanent horizontal displacement at the top of the wall after earthquake decreases on average between 40% and 73% compared to the wall without improvement. The triangle and trapezoidal geometrical patterns with the base at the bottom have the most positive effect on reducing both the horizontal displacement of the wall and the possibility of its seismic damage.

کلیدواژه‌ها [English]

  • Gravity quay wall
  • caisson
  • seismic performance
  • non-linear dynamic analysis
  • fragility curve
  • seismic vulnerability
  • performance-based design
[1] Sumer, Mutlu. Kaya, Abidin. and Hansen, Niels-Erik. (2002). Impact of liquefaction on coastal structures in the 1999 Kocaeli, Turkey earthquake. in: The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu: OnePetro.
[2] Inagaki, Hirofumi. Iai, Susumu. Sugano, Takahiro. Yamazaki, Hiroyuki. and Inatomi, Takamasa. (1996). Performance of caisson type quay walls at Kobe port. Soils and foundations, 36, 119-136.
[3] Zalachoris, Georgios. Zekkos, Dimitrios. Athanasopoulos-Zekkos, Adda. and Gerolymos, Nikos. (2021). The role of liquefaction on the seismic response of quay walls during the 2014 cephalonia, greece, earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 147 (12), 04021137.
[4] Ebrahimian, Babak. (2009). Seismic performance of anchored quay walls and numerical simulation techniques. In: Performance-Based Design in Earthquake Geotechnical Engineering: From Case History to Practice. CRC Press, 721-729.
[5] Alyami, Meral. Rouainia, Mohamed. and Wilkinson, Sean. (2009). Numerical analysis of deformation behaviour of quay walls under earthquake loading. Soil Dynamics and Earthquake Engineering, 29 (3), 525-536.
[6] Zarnousheh-Farahani, Amir. Ebrahimian, Babak. and Noorzad, Ali. (2018). Considering the geometry effect on the seismic behavior of block type gravity quay walls. In: 3rd Iranian Conference on Geotechnical Engineering. Tehran: Iranian Geotechnical Society.
[7] Ebrahimian, Babak. Zarnousheh-Farahani, Amir. and Noorzad, Ali. (2018). Seismic behavior of hunchbacked block-type gravity quay wall". In: International Conference on Coasts, Ports and Marine Structures (ICOPMAS). Tehran: Ports & Maritime Organization of Iran.
[8] Ebrahimian, Babak. Zarnousheh-Farahani, Amir. and Noorzad, Ali. (2019). Effect of applied surcharge length on seismic behavior of broken-back wall. In: 8th International Conferences of Seismology and Earthquake Engineering (SEE8) Tehran: International Institute of Earthquake Engineering and Seismology.
[9] Ebrahimian, Babak. & Farboud, Mohamed. (2019). Seismic effective-stress analysis of caisson quay wall with Liquefiable backfill. In: 8th International Conferences of Seismology and Earthquake Engineering (SEE8) Tehran: International Institute of Earthquake Engineering and Seismology.
[10] Karkush, Mahdi. Ali, Shahad. Saidik, Naghm. and Al-Delfee, Alaa. (2022). Numerical modeling of sheet pile quay wall performance subjected to earthquake. Geotechnical Engineering and Sustainable Construction. Springer, Singapore, 355-365.
[11] Pushpa, K. Prasad S. and NanjundaSwamy Prabhuswamy. (2022). Assessment of seismic displacement of quay walls. Recent Advances in Earthquake Engineering. Springer, Singapore, 291-299.
[12] Ebrahimian, Babak. & Bahmani, Saeed. (2019). Effect of liquefiable soil layer position on dynamic performance of anchored diaphragm walls - a numerical assessment. In: 8th International Conferences of Seismology and Earthquake Engineering (SEE8) Tehran: International Institute of Earthquake Engineering and Seismology.
[13] Cihan, Hulya. and Cihan, Kubilay. (2021). Dynamic responses of block type quay walls under cyclic loading. China Ocean Engineering, 35 (2), 281-290.
[14] Liu, Hexin. Wang, Rui. Zhang, Jian-Min. and Zhu, Tong. (2021). Seismic performance of a block-type quay wall with liquefiable backfill: comparison between centrifuge test, design code, and high-fidelity numerical modeling. In: International Conference of the International Association for Computer Methods and Advances in Geomechanics. Cham: Springer.
[15] Kim, Yeon Sam, Moon-Gyo Lee, Gye-Chun Cho, and Kil-Wan Ko. (2022). Inertial behavior of gravity-type quay wall: A case study using dynamic centrifuge test. Soil Dynamics and Earthquake Engineering, 155, 107196.
[16] Ebrahimian, Babak. (2013). Numerical modelling of the seismic behaviour of gravity-type quay walls. Engineering seismology, geotechnical and structural earthquake engineering, 257, IntechOpen, London, UK.
[17] Tong, Bin. and Schaefer, Vernon. (2016). Optimization of vibro-compaction design for liquefaction mitigation of gravity caisson quay walls. International Journal of Geomechanics,16 (4), 04016005.
[18] Jin, Zhuang. Yin, Zhen-Yu. Kotronis, Panagiotis. Li, Zheng. and Tamagnini, Claudio. (2019). A hypoplastic macroelement model for a caisson foundation in sand under monotonic and cyclic loadings. Marine Structures, 66, 16-26.
[19] Wang, Pei. and Yin, Zhen-Yu. (2020). Micro-mechanical analysis of caisson foundation in sand using DEM. Ocean Engineering, 203, 107240.
[20] Zhu, Bin. Byrne, Byron. And Houlsby, Guy. (2013). Long-term lateral cyclic response of suction caisson foundations in sand. Journal of geotechnical and geoenvironmental engineering, 139 (1), 73-83.
[21] Ebrahimian, Babak. & Mansoorzadeh, Seyed Mohammad. (2021). Long-term lateral cyclic response of suction caisson foundations. Road, 29, 107, 2021, 19-44. doi: 10.22034/road.2021.124806.
[22] Ulker, Mehmet. Rahman, M. and Guddati, Murthy. (2010). Wave-induced dynamic response and instability of seabed around caisson breakwater. Ocean Engineering, 37 (17-18), 1522-1545.
[23] Ebrahimian, Babak. & Hossein Panahi, Armin. (2019). Numerical evaluation of seismic behavior of rubble-mound breakwaters rested on a liquefiable seabed soil layer. In: 8th International Conferences of Seismology and Earthquake Engineering (SEE8) Tehran: International Institute of Earthquake Engineering and Seismology.
[24] Mostafavi-Moghadam, Amirali. Ghalandarzadeh, Abbas. Towhata, Ikuo. Moradi, Majid. Ebrahimian, Babak. and Hajialikhani, Pourya. (2009). Studying the effects of deformable panels on seismic displacement of gravity quay walls. Ocean Engineering, 36 (15-16) 1129-1148.
[25] Ghalandarzadeh, Abbas, Rahimi, Salman. and Kavand, Ali. (2020). Dynamic pore water pressure of submerged backfill on caisson quay walls: 1 g shake table tests. Soil Dynamics and Earthquake Engineering, 132 106091.
[26] PIANC (Permanent International Association of Navigation Congresses). (2001). Seismic Design Guidelines for Port Structures. Brussels: PIANC General Secretariat - Maritime Navigation Commission. Working Group no. 34.
[27] Tong, Bin. Schaefer, Vern. Liu, Yingjun. and Han, Bing. (2018). Optimization of deep mixing design for seismic liquefaction mitigation of Caisson walls. Geomatics, Natural Hazards and Risk.
[28] Alam, Jahangir. Towhata, Ikuo. and Sato, Hiroki. (2004). Earthquake damage mitigation of existing gravity type caisson quay wall by sand compaction piles. In: Proceedings of the Japan National Conference on Geotechnical Engineering the 39th Japan National Conference on Geotechnical Engineering. Tokyo: The Japanese Geotechnical Society.
[29] Alam, Jahangir. Towhata, Ikuo. (2005). Mitigation of caisson quay wall by sheet piling in seaside. In: Proceedings of 40th Japan National Conference on Geotechnical Engineering. Tokyo: The Japanese Geotechnical Society, 1807-1808.
[30] Honda, Tsuyoshi. Tanaka, Tomohiro. Towhata, Ikuo. and Tamate, Satoshi. (2005). Mitigation techniques of damages of quay wall due to seismic liquefaction. In: Proceedings of the fifth workshop on safety and stability of infrastructures against environmental impacts. Manila: De La Salle University, 5-6.
[31] Ichii, Koji. Suzuki, Y. Hironaka, J. Terakawa, H. Shigehisa, S. and Fukuda, M. (2006). Shake table tests for caisson-type quay walls retrofitted by geogrids. Millpress, Rotterdam, 879-882.
[32] Bathurst, Richard. Zarnani, Saman. and Gaskin, Andrew. (2007). Shaking table testing of geofoam seismic buffers. Soil Dynamics and Earthquake Engineering. 27 (4), 324-332.
[33] Hazarika, Hemanta. Kohama, Eiji. and Sugano, Takahiro. (2008). Underwater shake table tests on waterfront structures protected with tire chips cushion. Journal of Geotechnical and Geoenvironmental Engineering, 134 (12), 1706-1719.
[34] Watabe, Yoichi. Imamura, Shinichiro. and Tsuchida, Takashi. (2013). Seismic performance of caisson type quay wall with lightweight backfill. Indian Geotechnical Journal, 43 (2), 127-136.
[35] Wang, Ke. and Brennan, Andrew. (2015). Centrifuge modelling of fibre-reinforcement using as a liquefaction countermeasure of quay wall backfill. In: 6th International Conference on Earthquake Geotechnical Engineering. Christchurch: International Society for Soil Mechanics and Geotechnical Engineering.
[36] de Gijt, Jacob Gerrit. & Broeken, M. L. (2013). Quay Walls. 2nd edition, London: CRC Press.
[37] Argyroudis, Sotirios. Kaynia, Amir. & Pitilakis, Kyriazis. (2013). Development of fragility functions for geotechnical constructions: application to cantilever retaining walls. Soil dynamics and earthquake engineering, 50, 106-116
[38] Rossetto, Tiziana. & Elnashai, Amr. (2003). Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering structures, 25 (10), 1241-1263.
[39] Argyroudis, Sotirios. and Pitilakis, Kyriazis. (2012). Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering, 35, 1-12.
[40] Mayoral, Juan. Argyroudis, Sotiris. and Castañon, Ernesto. (2016). Vulnerability of floating tunnel shafts for increasing earthquake loading. Soil Dynamics and Earthquake Engineering, 80, 1-10.
[41] Bernier, Carl. Padgett, Jamie. Proulx, Jean. and Paultre, Patrick. (2016). Seismic fragility of concrete gravity dams with spatial variation of angle of friction: case study. Journal of Structural Engineering,142 (5), 05015002.
[42] Morales-Torres, Adrián. Escuder-Bueno, Ignacio. Altarejos-García, Luis. and Serrano-Lombillo, Armando. (2016). Building fragility curves of sliding failure of concrete gravity dams integrating natural and epistemic uncertainties. Engineering Structures, 125, 227-235.
[43] Zamiran, Siavash. and Osouli, Abdolreza. (2018). Fragility analysis of seismic response of cantilever retaining walls with cohesive and cohesionless backfill materials. In: International Foundations Congress & Equipment Expo (IFCEE 2018). Orlando: International Society for Soil Mechanics and Geotechnical Engineering, 139-146.
[44] Argyroudis, Sotiris. and Kaynia, Amir. (2015). Analytical seismic fragility functions for highway and railway embankments and cuts. Earthquake Engineering & Structural Dynamics, 44 (11), 1863-1879.
[45] Heidary-Torkamani, Hamid. Bargi, Khosrow. and Amirabadi, Rouhollah. (2014). Seismic vulnerability assessment of pile-supported wharves using fragility curves. Structure and Infrastructure Engineering, 10 (11), 1417-1431.
[46] Heidary-Torkamani, Hamid. Bargi, Khosrow. Amirabadi, Rouhollah. and McCllough, Nason. (2014). Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil dynamics and earthquake engineering, 61, 92-106.
[47] Lupoi, Giorgio, Giovanni Cuomo, Ken-ichiro Shimosako, and Shigeo Takahashi. (2009). Wave-loads fragility assessment of caisson breakwaters under breaking and non-breaking wave attack. In: Coastal Structures 2007: (In 2 Volumes). 303-314.
[48] Ichii, Koji. (2002). A seismic risk assessment procedure for gravity type quay walls. Structural engineering/Earthquake engineering, 19 (2), 131-140.
[49] Ichii, Koji. (2004). Fragility curves for gravity-type quay walls based on effective stress analyses. In: 13th WCEE. Vancouver.
[50] Jafarian, Yaser., Miraei, Mohsen., Lashgari, Ali., & Shakeri, Pardis. (2014). Probabilistic evaluation of dynamic response of caisson quay walls in soil improved by fiber: A numerical study. In: Proceeding of Numerical methods in geotechnical engineering. Delft: Taylor and Francis, 909-914.
[51] Jafarian, Yaser., Miraei, Mohsen. (2019). Scalar-and vector-valued fragility analyses of gravity quay wall on liquefiable soil: example of Kobe Port. International Journal of Geomechanics, 19 (5) 04019029.
[52] Itasca Consulting Group, Inc. (2019). FLAC version 8.1: Fast Lagrangian Analysis of Continua. User’s guide. Minneapolis: Itasca Consulting Group.
[53] Potts, David. M., & Zdravković, Lidija. (1999). Finite Element Analysis in Geotechnical Engineering: Theory (Vol. 1), Thomas Telford.
[54] Beaty, Michael. and Byrne. Peter. (2011). UBCSAND Constitutive Model version 904aR. Itasca UDM Web Site 69.
[55] OCDI. (2009). Technical Standards and Commentaries for Port and Harbour Facilities in Japan. Tokyo: Overseas  oastal Area Development Institute of Japan (OCDI).
[56] Dafalias, Yannis. F., & Manzari, Majid. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6), 622-634.
[57] Wang, Zhi-Liang., Dafalias, Yannis. F., & Shen, Chih-Kang. (1990). Bounding surface hypoplasticity model for sand. Journal of engineering mechanics, 116(5), 983-1001.
[58] Wang, Zhi-Liang., & Ma, F. G. (2007). A simple soil model for complex loadings. In Proceedings of International Symposium on Computational Mechanics, July 30 – August 1, 2007, Beijing, China.
[59] Alonso, Eduardo. E., Gens, Antonio, & Josa, Alejandro. (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3), 405-430
[60] Puebla, Humberto. Byrne, Peter. and Phillips, Ryan. (1997). Analysis of CANLEX liquefaction embankments: prototype and centrifuge models. Canadian Geotechnical Journal, 34 (5), 641-657.
[61] Oettle, Nicolas. and Bray, Jonathan. (2016). Numerical procedures for simulating earthquake fault rupture propagation. International Journal of Geomechanics, 17 (1), 04016025.
[62] Beaty, Michael. (2018). Application of UBCSAND to the LEAP centrifuge experiments. Soil Dynamics and Earthquake Engineering, 104, 143-153.
[63] Giridharan, Shreyas. Gowda, Sujith. Stolle, Dieter. and Moormann, Christian. (2020). Comparison of ubcsand and hypoplastic soil model predictions using the material point method. Soils and Foundations, 60 (4). 989-1000.
[64] Park, Sung-Sik. Doan, Nhat-Phi. and Nong, Zhenzhen. (2021). Numerical prediction of settlement due to the Pohang earthquake. Earthquake Spectra, 37 (2), 652-685.
[65] Hardin, Bobby. (1978). The nature of stress-strain behavior for soils. Earthquake Engineering and Soil Dynamics (and in: Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, June 19-21, California, 1978), (1).
[66] Beaty, Michael. & Byrne, Peter. (1998). An effective stress model for pedicting liquefaction behaviour of sand. Geotechnical Earthquake Engineering and Soil Dynamics, 3, 766-777.
[67] Park, Sung-Sik. (2005). A two mobilized-plane model and its application for soil liquefaction analysis. PhD diss. University of British Columbia.
[68] Zentner, Irmela, Max Gündel, and Nicolas Bonfils. (2017). Fragility analysis methods: Review of existing approaches and application. Nuclear Engineering and design, 323, 245-258.
[69] PEER. (2010). Pacific Earthquake Engineering Research Center; PEER Strong Motion Database. University of California, Berkeley, California, http://peer.berkeleyedu/ngawest/databases.html.
[70] Hancock, Jonathan, Jennie Watson-Lamprey, Norman A. Abrahamson, Julian J. Bommer, Alexandros Markatis, E. M. M. A. McCoy, and Rishmila Mendis. (2006). An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of earthquake engineering, 10(spec01), 67-89.
[71] Majidian, Sina. & Komak Panah, Ali. (2020). Hybrid experimental and numerical approach for assessment of non-linear dynamic behavior of soil-nailed retaining walls. International Journal of Non-Linear Mechanics, 123, 103476.