بهینه سازی و کاهش مسدودی خطوط ریلی با استفاده از شبکه های عصبی سه لایه پرسپترون

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری اطلاعات، گروه مدیریت فناوری اطلاعات، واحد قشم، دانشگاه آزاد اسلامی، قشم، ایران

2 دانشیار، دانشکده برق و کامپیوتر، واحد یادگار امام خمینی (ره) شهر ری، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، دانشکده مدیریت، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

امروزه در سراسر جهان حجم عظیمی از داده ها از طریق ظرفیت بالای شبکه های مخابراتی نوری انتقال می یابد. در راه آهن نیز شبکه های مخابراتی انتقال نوری در انتقال داده های حیاتی ریلی, و ایمنی سیر و حرکت نقش بسیار بالایی دارند. پایداری قابلیت اطمینان زیرساخت های مخابراتی در افزایش بهره وری، حفظ ایمنی و همچنین کاهش هزینه های نگهداری الزامی می باشد. در این مقاله سطح قابلیت اطمینان موجود و کلیه پارامترهای مربوطه (تعداد قطعی های شبکه و مدت زمان بین خرابی های شبکه MTBF) ) شبکه مخابراتی انتقال نوری راه آهن برای بدست آوردن تعداد مسدودی خطوط ریلی از طریق متد بلوک دیاگرام ((Reliability block diagram مدل سازی و از طریق متد مونت کارلو شبیه سازی شده و سپس با هدف کاهش مسدودی خط بهینه سازی شده است با توجه به اینکه با هر خرابی شبکه، خطوط ریلی مسدود می شوند، تعداد قطعی شبکه با مسدودی خط برابر است. بنا براین با بهینه سازی قابلیت اطمینان شبکه مسدودی خط کاهش می یابد. . همچنین پیش بینی رفتار شبکه و بدست آوردن احتمال خرابی های آن از طریق شبکه های عصبی سه لایه پرسپترون انجام شده و نتایج آن ارائه شده است. شبکه پیاده سازی شده در این مقاله شبکه انتقال مخابرات نوری منطقه ریلی آذربایجان به طول ۶۵۴ کیلومتر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization and reduction of blocking of railway lines using three-layer perceptron neural networks

نویسندگان [English]

  • MAZIAR YAZDANY 1
  • Saeed Ghazi Maghrebi 2
  • محمد علی Mohammad Ali Afshar Kazemi 3
1 Ph.D. Student, Department of Information Technology Management, Qeshm Branch, Islamic Azad University, Qeshm, Iran
2 Assistant Professor, Department of Telecommunication Engineering, Electrical and Computer Faculty, Yadgar Imam Khomeini Branch, Shahr Ray, Islamic Azad University, Tehran, Iran
3 Assistant Professor, Department of Industrial Management, Faculty of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Today, a huge amount of data is transmitted around the world through the high capacity of optical telecommunication networks. In railways, optical transmission telecommunication networks play a very important role in the transmission of vital rail data and the safety of movement. Reliability stability of telecommunication infrastructure is essential in increasing productivity, maintaining safety and reducing maintenance costs. In this article, the existing reliability level and all relevant parameters (the number of network outages and the duration between network failures, MTBF) of the railway optical transmission telecommunication network to obtain the number of blocked railway lines through the block diagram method (Reliability block diagram model) created and simulated through the Monte Carlo method and then optimized with the aim of reducing line blocking, considering that with each network failure, rail lines are blocked, the number of network outages is equal to line blocking. Therefore, with optimization, the reliability of the line blocking network is reduced. Also, predicting the behavior of the network and obtaining the probability of its failure is done through perceptron three-layer neural networks and its results are presented. The network implemented in this article is an optical telecommunication transmission network. The railway zone of Azerbaijan is 654 km long.

کلیدواژه‌ها [English]

  • Optical transmission telecommunication network
  • Reliability
  • Monte Carlo simulation
  • perceptron neural
  • RBD model
[1] Ghazi Mazhrebi, S. Yazdani, M. and Hajizadeh, f. (2019), "Examining Liberalization of Iranian Railway Communication Service,"  IEEE International Symposium on Networks, Computers and Communications (ISNCC).
[2] Yazdani, M. (2014). “signaling & communication in the railway from yesterday to tomorrow”, The Iranian Railway Training & research center, Tehran, P. 303.
[3]   khodaee, A, Yazdani, M, Hajizadeh, F. (2018). “The liberation of rail telecommunication services”, the Iranian railways training and research center, Tehran, p. 318.
[4]  Bourne, A. J. (1989). “Book Review: Advances in Reliability Technology Symposium”, The international journal of electrical Engineering & education, Volume: 26 issue: 4,  p. 376-376.
[5]  Dialynas, E. N. (1992). “Book Review: 11th Advances in Reliability Technology Symposium”, The international journal of electrical Engineering & education, Vol 29, Issue 2, pp. 132-132,
[6] Smith, D. (2017). “Reliability, Maintainability and Risk”, Elsevier Ebook, 9th Edition, p. 430.
[7] Saraswat, S. and Yadava, G.S. (2008). “An overview on reliability, availability, maintainability and supportability (RAMS) engineering”, International Journal of Quality & Reliability Management, VOL. 25, p. 330-344.
[8] Figiel, K.D. and Sule, D.R. (1990). “A generalized reliability block diagram (RBD) simulation”, IEEE Simulation Conference Proceedings, USA.
[9] Min, Yu.  Chunhui, Y. and Sen, Z. (2013). “Reliability Model for Control Centre of Railway Signalling System Based on SRN”, IEEE  Fourth International Conference on Digital Manufacturing & Automation, CHINA.
[10] Wakar. A, Osman. H, Usman. P, and Junaid. Q, (2017), “Reliability Modelling and Analysis of Communication Networks”, Elsevier Journal of Network and Computer Applications, Volume 78, p. 191-215.
[11] Macchi, M. Garetti, M. Centrone, D. Fumagalli, L. and Pavirani, G. (2012). “Maintenance management of railway infrastructures based on reliability analysis”, Elsivier Reliability Engineering & System Safety, Vol 104, p. 71-83.
[12] Ting, J. and Jian , D. W, (2012). “Reliability Models of GSM-R Redundant Network on High-Speed Railway” Materials science & Engineering, vol.198-199, p. 1783-1788.
[13] Lijie, Ch. Tao, T. Xianqiong, Zh.  and Schnieder, E. (2012). “Verification of the safety communication protocol in train control system using colored Petri netReliability Engineering & System Safety, Vol. 100,  P 8-18.
[14] A. Maria, (2013), “The introduction of common safety methods” IEEE International Conference on Railway Safety Assurance: Management and Method in a Safe Network, London, UK.
[15] Seongwoo, W. (2020), “Reliability Design of Mechanical Systems”, chapter “Modern Definitions in Reliability Engineering”, ResearchGate, p 53-99.
[17] Dhillon, B. S. (1999), "Design Reliability: Fundamentals and Applications, university of Ottawa", Ontario, Canada.
[18] Allan, R. N. , (1979), “Book Review: Economics of Reliability in Electrical Power Systems”, The international journal of electrical Engineering & education, Vol 16, Issue 4, p. 383-383.
[19] Karanki, D. Vinod, G. and Ajit S, (2020 ), “Advances in RAMS Engineering”, book, Springer Nature Switzerland AG.
[20] Singh, J. and Banerjee, R ,  (2019), "A Study on Single and Multi-layer Perceptron Neural Network" IEEE  3rd International Conference on Computing Methodologies and Communication (ICCMC).
[21] Panda, Ch. Narayan Patro, S. and Kumar Gantayat, P.(2012), “Link Reliability in WDM Optical Network”, Chinmayananda Panda et al / Indian Journal of Computer Science and Engineering (IJCSE), Vol. 3 No. 1, P. 126-132.
[22] Brémaud,  P. (2020), “Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues “, Springer International Publishing, p. 557.
[23] Bing. HZhengyang. ChBei L, Yanmin. Q, (2022), "MLP-SVNET: A Multi-Layer Perceptrons Based Network for Speaker Verification",  IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)Singapore.
[24] Yuan. L, (2022), "Research of reliability data analysis and optimization for interior system", IEEE Global Reliability and Prognostics and Health Management (PHM-Yantai), China.