ارزیابی میدانی و عددی آسیب‌پذیری لرزه‌ای قلعه فلک الافلاک ‏

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

چکیده

در این مقاله آسیب‌پذیری لرزه‌ای یکی از آثار باستانی در کشور، قلعه فلک الافلاک ‏واقع در استان لرستان مورد ارزیابی قرار می‌گیرد. در ‏این راستا، با انجام بررسی‌های میدانی، آسیب‌های موجود در بخش‌های مختلف بنا تعیین و دسته‌بندی شد. نتایج این بررسی‌ها حاکی از ‏فرسایش و ترک خوردگی ‏در اجزای سازه‌ای بنا، نشست‌های قسمت‌هایی از بنا که سبب ترک خوردگی در بخش‌هایی از بنا شده بود، و ‏نیز نم‌کشیدگی بالارونده به دلیل وجود جریان آب در پی بنا بود. در ادامه، با مدل‌سازی اجزای محدود بنا در نرم‌افزار آباکوس، ‏آسیب‌پذیری لرزه‌ای بنا از طریق انجام تحلیل بارافزون مورد مطالعه قرار گرفت. نتایج این تحلیل حاکی از آسیب‌پذیری بخش‌های ‏مختلف بنا بود که لزوم ارائه طرح بهسازی لرزه‌ای را نشان می‌داد. با بهره‌گیری از شمع‌های درجا و نیز ریزشمع‌ها در خاک و نیز استفاده ‏از هسته‌های مسلح قائم در دیوارها، نتایج تحلیل‌های عددی نشان داد بهبود قابل ملاحظه‌ای در عملکرد لرزه‌ای بنا رخ داده است. شدت ‏کرنش‌های پلاستیک اصلی بیشینه و نیز گستردگی آن در مقایسه با بنای بهسازی نشده بسیار کمتر بود. همچنین نمودارهای نیرو-‏جابجایی بنا در راستاهای مختلف حاکی از کاهش قابل ملاحظه زوال در سختی بنا بوده که نشان دهنده کاهش آسیب‌پذیری آن به ‏سبب اضافه کردن سیستم بهسازی پیشنهادی شده است. ‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic vulnerability assessment of Falak-ol-Aflak Castle

نویسندگان [English]

  • Alireza Khaloo 1
  • Mohammad Yekrangnia 2
1 Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
2 Associate Professor, Civil Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

In this article, seismic vulnerability of one of the ancient monuments ‎in Iran, Falakol aflak Castle, located in ‎Lorestan, is evaluated. In this ‎regard, by conducting field surveys, the damages in different parts of ‎the ‎building were categorized. The results of these investigations ‎indicated erosion and cracking in the ‎construction of the building, ‎settlements of parts of the building that caused cracks in some parts ‎of the building, ‎and rising dampness due to the presence of water ‎flow in the foundation of the building. Next, by modeling the ‎building ‎in Abaqus software, the seismic vulnerability of the building was ‎studied through incremental analysis. The ‎results of this analysis ‎indicated the vulnerability of different parts of the building, which ‎indicated the necessity of ‎presenting a seismic improvement plan. By ‎using in-situ piles and micro piles in the soil as well as vertical ‎reinforced ‎cores in the walls, the results of numerical analysis showed ‎that a significant improvement in the seismic ‎performance of the ‎building has occurred. The intensity of the original maximum plastic ‎strains and its extent were ‎much less compared to the unretrofitted ‎building. Also, the force-displacement diagrams of the building in ‎different ‎directions indicated a significant decrease in the ‎deterioration of the building's stiffness, which indicates the ‎reduction ‎of its vulnerability due to the addition of the proposed improvement ‎system. ‎

کلیدواژه‌ها [English]

  • Falak Al-Aflak &lrm
  • Castle
  • Vulnerability assessment
  • Retrofit plan
  • Numerical Modeling
  • Crack
[1] Amirshah karami, A., Satatrian H.H., and Ensani, A., (2008). Retrofit and Numerical Simulation of ‎ Falakol Aflak Castle, In: 2nd National Conference on Strengthening and Retrofitting, Kerman, Iran.
[2] Amirshah karami, A., Khazaie, J., Nomiri, M.and Mahdiabadi, M., (2008). Numerical Study of Interaction of‎ Falakol Aflak ‎Castle and the Retrofit Elements of the Rock Foundation, In: 3rd Iranian Rock Mechanics Conference, Tehran, Iran.
[3] Khaloo, A., Khoshnevis, A., & Yekrangnia, M. (2019). On the vulnerability of the Shrine of Prophet Daniel through field observation and numerical simulation. Engineering Failure Analysis, 102, 237-259.
[4] Farahani, E. M., Yekrangnia, M., Rezaie, M., & Bento, R. (2021). Seismic behavior of masonry walls retrofitted by centercore technique: A numerical study. Construction and Building Materials, 267, 120382.
[5] Ebrahimiyan, M., Golabchi, M., & Yekrangnia, M. (2017). Field observation and vulnerability assessment of Gonbad-e Qābus. Journal of Architectural Engineering, 23(4), 05017008.
[6] Yekrangnia, M., & Mobarake, A. A. (2016). Restoration of historical Al-Askari shrine. I: Field observations, damage detection, and material properties. Journal of Performance of Constructed Facilities, 30(3), 04015030.
[7] Yekrangnia, M., & Mobarake, A. A. (2016). Restoration of historical Al-Askari shrine. II: Vulnerability assessment by numerical simulation. Journal of Performance of Constructed Facilities, 30(3), 04015031.
[8] Yekrangnia, M. (2018). Advanced Design Examples of Seismic Retrofit of Structures. Butterworth-Heinemann.
[9] Betti, M., Galano, L., & Lourenço, P. B. (2021). Territorial seismic risk assessment of a sample of 13 masonry churches in Tuscany (Italy) through simplified indexes. Engineering Structures, 235, 111479.
[10] Cámara, M., Romero, M., Pachón, P., Compán, V., & Lourenço, P. B. (2021). Integration of disciplines in the structural analysis of historical constructions. The Monastery of San Jerónimo de Buenavista (Seville-Spain). Engineering Structures, 230, 111663.
[11] Zarrabi, M., & Valibeig, N. (2021). 3D modelling of an Asbad (Persian windmill): a link between vernacular architecture and mechanical system with a focus on Nehbandan windmill. Heritage Science, 9(1), 1-11.
[12] Najafgholipour, M. A., Darvishi, H., & Maheri, M. R. (2021). The influence of the frequency content of ground motion on the nonlinear dynamic response and seismic vulnerability of historical masonry towers. Bulletin of Earthquake Engineering, 19(7), 2919-2940.
[13] Dais, D., Sarhosis, V., Smyrou, E., & Bal, I. E. (2021). Seismic intervention options for multi-tiered Nepalese Pagodas: The case study of Jaisedewal temple. Engineering Failure Analysis, 123, 105262.
[14] Aghabeigi, P., & Farahmand-Tabar, S. (2021). Seismic vulnerability assessment and retrofitting of historic masonry building of Malek Timche in Tabriz Grand Bazaar. Engineering Structures, 240, 112418.
[15] Pirchio, D., Walsh, K. Q., Kerr, E., Giongo, I., Giaretton, M., Weldon, B. D., ... & Sorrentino, L. (2021). Integrated framework to structurally model unreinforced masonry Italian medieval churches from photogrammetry to finite element model analysis through heritage building information modeling. Engineering Structures, 241, 112439.
‎[16] Amirshah karami, A., Ensani, A., and Satatrian H.H., (2000). Engineering Geology of Falakol Aflak Historic ‎Castle, In: Engineering Geology and Environment of Iran, Tehran, Iran.  ‎
[17] Eurocode 6 (1996): Design of masonry Structures, Simplified Calculation Methods for Unreinforced ‎Masonry Structures.
[18] Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of materials in Civil Engineering, 19(9), 728-739.
[19] Reddy, B. V., & Vyas, C. V. U. (2008). Influence of shear bond strength on compressive strength and stress–strain characteristics of masonry. Materials and structures, 41(10), 1697-1712.
[20] L.E. El-Refai, A.E. Salama, E.H. Morsy, Analytical and Experimental Investigation of Masonry ‎in Compression, Proceeding of the First National Conference on the Science and Technology of ‎Buildings, Khartoum, 1984 ‎
[21] FEMA-356 (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings American Society of Civil Engineers.
[22] Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division, 97(7), 1969-1990.
[23] Lourenço P. J. B. B. (1996), Computational strategies for masonry structures, PhD Thesis, Delft University ‎of Technology.
[24] Berto, L., Saetta, A., Scotta, R., & Vitaliani, R. (2005). Failure mechanism of masonry prism loaded in axial compression: computational aspects. Materials and structures, 38(2), 249-256.
[25] Vice Presidency for Strategic Planning and Supervision, (2014). Instruction for Seismic Rehabilitation of Existing Buildings (Code No. 360). Tehran, Iran.