بررسی تأثیر سختی دیوارهای غیرسازه‌ای متشکل از پانل‌های با ‌‌‌هسته پلی‌استایرن و روکش بتنی سبک در اندرکنش با قاب فولادی ساده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، واحد تهران غرب ، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه معماری، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

4 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.

چکیده

در این مقاله،‌‌ تأثیر سختی یک نوع پانل سبک با هسته پلی‌استایرن و روکش بتنی سبک در قاب‌های فلزی ساده بررسی شد. به ‌منظور یافتن رفتار این نوع پانل و تعیین تأثیر سختی و نحوه تعامل آن با قاب فلزی یک مطالعه تجربی بر روی دو نمونه قاب یک طبقه یک دهانه با مقیاس واقعی به دو صورت جداسازی شده (از بالا و اطراف قاب) و جداسازی نشده انجام شد. نمونه‌ها تحت اثر جابه‌جایی کنترل شده قرار گرفتند تا رفتار داخل صفحه آنها بررسی شود. هر دو نمونه تحت بارگذاری چرخه‌ای شبه‌استاتیک قرار گرفتند. نتایج حاکی از آن است که در هر دو نمونه به دلیل رفتار مناسب بتن پانل‌ها، با افزایش دامنه جابه‌جایی، سختی با شیب ملایم کاهش می‌یابد و کاهش سختی به‌ صورت ناگهانی وجود ندارد. به طوری که در مدل جداسازی شده در جابه جایی نسبی %1 سختی پانل kN/mm 1/2 است. وقتی که جابه جایی نسبی به % 2/5 درصد افزایش می‌یابد مقدار سختی به kN/mm 0/88 کاهش می‌یابد. در مدل جداسازی نشده در جابه جایی نسبی %1 ، سختی پانل kN/mm 2/49 است. وقتی که جابه جایی نسبی به %2/5 افزایش می-یابد مقدار سختی به kN/mm 0/89 کاهش می‌یابد. در الگوی شکست نیز نتیجه‌ای مشابه به دست آمد. بدین معنی که با افزایش جابه‌جایی و تعامل بیشتر بین پانل و قاب، گوشه‌های پانل‌ها تخریب شدند و دوباره تعامل ایجاد ‌ و مجدداً قسمت دیگری از گوشه پانل تخریب گردید و شکست کامل در پانل‌ها مشاهده نشد. به همین ترتیب در نمونه جداسازی ‌نشده بدون تخریب کلی و پس از کاهش سختی، به حالت نمونه جداسازی‌شده می‌رسد و در ادامه بارگذاری، مشابه قاب جداسازی ‌شده عمل می‌کند؛ بنابراین حتی درصورتی‌که پانل از قاب جداسازی نشود ، تخریب ناشی از شکست ‌ترد اتفاق نخواهد افتاد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of stiffness of non-structural walls consisting of panels with polystyrene core and lightweight concrete coating in infill-steel frame interaction

نویسندگان [English]

  • Keyhan Yasemi 1
  • S.Mohammad Mirhosseini 1
  • Farhang Farahbod 2
  • Saeed Salehi 3
  • Ehsanollah Zeighami 4
1 Department of civil engineering, Arak Branch, Islamic Azad University, Arak, Iran.
2 Department of civil engineering, Tehran West Branch, Islamic Azad University, Tehran, Iran
3 Department of architectural engineering, Arak Branch, Islamic Azad University, Arak, Iran.
4 Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
چکیده [English]

This paper investigated the effect of the stiffness of a light panel type with polystyrene core and lightweight concrete coating on the behavior of plain steel frames. An experimental study was performed on two large-scale specimens of one-story single-span. The behavior of panels and determine the effect of their stiffness, an in-plane infill-frame interaction frame, including a steel frame with isolated and non-isolated panels, were investigated. The specimens were tested under controlled displacement to investigate the in-plane infill-frame interaction of steel frames. Both isolated and non-isolated panels were tested under quasi-static cyclic loading. The results show that the proper behavior of this type of panel in isolated and non-isolated frames, the global stiffness of the frames and panels are reduced with a gentle slope, and brittle failure does not occur in the frames and panels. In the isolated specimens, the relative displacement (drift) of 1%, and the stiffness was 1.22 kN/mm. When the drift increased to 2.5%, the stiffness decreased to 0.88 kN/mm. In the non-isolated specimens, the drift of 1%, and the stiffness was 2.49 kN/mm. When the drift increased to 2.5%, the stiffness decreased to 0.89 kN/mm. The behavior of the non-isolated frame after loading is similar to the isolated frame because only the corners of the panel failed. A similar result was obtained in the failure pattern. In other words, the corners of the non-isolated panels attached to the frame failed by increasing the displacement due to in-plane infill-frame interaction. In the subsequent cycles, another part of the corners of the panels failed again. Complete failure was not observed in the panels. Similarly, in the non-isolated specimens, the panels remain without global failure after applying the cyclic load. The behavior of the non-isolated frame is similar to the isolated frame, with a decreased stiffness.

کلیدواژه‌ها [English]

  • Frame Stiffness
  • isolated and non-isolated panels
  • infill-frame interaction
  • quasi-static cyclic loading
  • Failure
[1] Hashemi, S. A. (2007). Seismic evaluation of reinforced concrete buildings including effects of masonry infill walls, Phd Dissertation, College of Engineering, University of California, Berkeley.
[2] Albert, M.L., Elwi, A. E, and Cheng, J. J. (2001). Strengthening of unreinforced masonry walls using FRPs. Journal of Composites for Construction, 5 (2), 76–84.
[3] Schwartz J, Mojsilovic´ N, Becker C, et al. (2011) Cyclic shear load tests on seismically strengthened masonry walls. In: Proceedings of the 11th North American masonry conference (NAMC), Minneapolis, MN, 5–8 June, pp. 1331– 1342. Available at: http://www.schwartz.arch.ethz.ch/ Publikationen/Dokumente/mauerwerk.pdf
 [4] El-Dakhakhni, W., Hamid, A. A., and Elgaaly, M. (2004). Seismic retrofit of concrete-masonry-infilled steel frame with glass fiber-reinforced polymer laminates. Journal of Structural Engineering, 130 (9), 1343–1352.
[5] Altın, S., Anıl, O¨, Kopraman, Y., and Belgin, C.. (2010). Strengthening masonry infill walls with reinforced plaster. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 163 (5), 331–342.
 [6] Jung, W. Y., and Aref, A. J. (2005). Analytical and numerical studies of polymer matrix composite sandwich infill panels. Composite Structures, 68 (3), 359–370.
[7] Sahota, M. K., and Riddington, J. R. (2001). Experimental investigation into using lead to reduce vertical load transfer in infilled frames. Engineering Structures, 23 (1), 94–101.
[8] Ju, R. S, Lee, H. J., Chen, C. C., and Tao, C. C. (2012). Experimental study on separating reinforced concrete infill walls from steel moment frames. Journal of Constructional Steel Research, 71 (1), 119–128.
 [9] Markulak, D., Radic, I., and Sigmund, V. (2013). Cyclic testing of single bay steel frames with various types of masonry infill. Engineering Structures, 51 (1), 267–277.
[10] Morandi, P., Milanesi, R. R., and Magenes, G. (2018). Innovative solution for seismic-resistant masonry infills with sliding joints: in-plane experimental performance. Engineering Structures, 176 (1), 719–733.
[11] Mohammadi, M., and Akrami, V. (2010). An engineered infilled frame: behaviour and calibration. Journal of Constructional Steel Research, 66 (6), 842–849.
[12] Mohammadi, M., Akrami, V., and Mohammadi-Ghazi, R. (2011). Methods to improve infilled frame ductility. Journal of Structural Engineering, 137 (6), 646-653.
[13] Mohammadi, M. and Mohammadi-Ghazi, R. (2012). A new infilled steel frame with engineering properties. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 165 (1), 15–25.
[14] Hashemi, S. J., Razzaghi, J., and Moghadam, A. S. (2018). Behaviour of sandwich panel infilled steel frames with different interface conditions. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 171 (2), 166–177.
[15] Asadzadeh, S. A., Mohamadi, M., Khajeh Ahmad Attari, N., and Zareei, S. A. (2020). An experimental study on the effect of frame-to-wall connection type on the seismic behavior of steel frames infilled with autoclave-cured aerated concrete blocks. Advances in Structural Engineering, 1–15.
[16] Kahrizi, M., and TahamouliRoudsari, M. (2020). Experimental Study on Properties of Masonry Infill Walls Connected to Steel Frames with Different Connection Details. Structural Durability & Health Monitoring, 14 (2), 165-185.
 [17] Pachideh, G., Gholhaki, M., Yadegari, A., and Shiri, M. (2016). Modeling and Analysis of Thin Steel Plate Shear Walls Using the New Method, 2nd international conference on civil engineering, architecture & urban planning elites, London-united kingdom ,124-136
 
[18] Kheyroddin, A.,. Gholhaki, M., and  Pachideh., Gh. (2019). Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the near-fault field, Journal of Rehabilitation in Civil Engineering 7 (1), 159-173.
 
[19] Ismail. N., El-Maaddawy. T., Khattak. N., and Najmal., A. (2019). In-Plane Shear Strength Improvement of Hollow Concrete Masonry Panels Using a Fabric-Reinforced Cementitious Matrix. American Society of Civil Engineers, 22(2), 4-13
 
[20] Federal Emergency Management Agency (FEMA). (2000). FEMA 356: Prestandard  for the seismic Rehabilitation of Buildings. Washington, D.C, USA.
[21] Federal Emergency Management Agency (FEMA). (2007). FEMA 461: Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Burlingame, CA, USA.
 
[22] American Institute of Steel Constuction (AISC).(2010). Specification for Structure Steel Buildings (ANSI/AISC318-10). Chicago, USA
 
[23] American Concrete Institute (ACI).(2019). Building Code Requirements for Structural Concrete (ACI 318-19). USA
 
[24] Hashemi. S.J., Razzaghi. J. S., Moghadam. A., Lourenço. P. B. (2018b). Cyclic testing of steel frames infilled with concrete sandwich panels. Archives of civil and mechanical engineering, 18: 557–572.