بررسی آزمایشگاهی اثر استفاده از الیاف فلزی در قاب‌های خمشی به‌منظور کاهش اثرات خطای ساخت در این سیستم‌های سازه‌ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجو دکترا،گروه عمران، دانشکده فنی مهندسی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

2 استادیارگروه عمران،دانشکده فنی مهندسی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

3 دانشیارگروه عمران، دانشکده فنی مهندسی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

سازه های بتن آرمه قاب خمشی از پر کاربرد سیستم های سازه ای در دنیا محسوب می شوند. شکل پذیری بالا، مقاومت قابل قبول، سهولت در اجرا و کمتر بودن محدودیت های معماری به نسبت دیگر سیستم های سازه ای از ویژگی های مثبت قاب های خمشی بتن آرمه است. خطای ساخت و عدم استفاده از طرح اختلاط مناسب بتن عموما از عوامل ضعف عملکرد این سازه ها هستند. در مقاله حاضر تلاش شده است تا در یک تحقیق آزمایشگاهی اثر افزودنی های بتن بر عملکرد سازه های بتنی معمول و دارای خطای ساخت بررسی شود. سه نمونه ی آزمایشگاهی یک سوم مقیاس دارای الیاف فلزی و نمونه های دارای مواد هوا زا در محل اتصال تیر به ستون ساخته شده و در آزمایشگاه تحت بارگذاری شبه استاتیکی چرخه ای قرار گرفتند. پارامتر های لرزه ای سختی، شکل پذیری، مقاومت نهایی، ضریب رفتار و ظرفیت اتلاف انرژی از نمودار هیسترزیس تست های آزمایشگاهی بدست آمده و مورد ارزیابی قرار گرفتند. نتایج آزمایشات نشان داد که استفاده از الیاف فلزی باعث بهبود عملکرد لرزه ای سازه های بتنی شده و پارامتر های سختی، مقاومت نهایی و ظرفیت اتلاف انرژی را بهبود می بخشد؛ هرچند که افتی جزئی در شکل پذیری و ضریب رفتار ایجاد می کنند. همچنین به این نتیجه رسیده شد که در صورتی که خطای ساخت نیز در سازه وجود داشته باشد، استفاده از الیاف فلزی رفتار بهتری نسبت به یک قاب بتن آرمه سالم با مصالح معمول را ارائه خواهد داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of the Effect of Fiber Additives to Concrete Materials in RC Moment-Resisting Frames with Manufacturing Errors

نویسندگان [English]

  • Mojtaba Bakhshipour 1
  • Javad Esfandiari 2
  • Mehrzad TahamouliRoudsari 3
1 Ph.D Student ,, Department of Civil Engineering, College of Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
2 Assistant Professor, Department of civil Engineering , college of Engineering, kermanshah branch. Islamic Azad university, , kermanshah, Iran
3 Associate Professor, Department of Civil Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده [English]

Reinforced concrete structures with moment resisting frames are one of the most widely used structural systems in the world. High ductility, acceptable strength, ease of implementation, and fewer architectural limitations compared to other structural systems are the positive features of reinforced concrete moment-resisting frames. Construction errors and the use of improper mixing designs for concrete materials are generally the causes of the poor performance of these structures. In the present study, an attempt has been made to investigate the effect of concrete additives on the performance of conventional concrete structures with fabrication errors in an experimental study. three one-third-scale experimental specimens were constructed using Steel Fibers (SF) and Air Entering Admixture (AEA) materials at the beam-column joints. The samples were subjected to cyclic quasi-static loading in the laboratory. Seismic parameters of stiffness, ductility, ultimate strength, and energy dissipation capacity were obtained and evaluated from the hysteresis diagrams of experimental tests. The experimental results showed that the use of steel and polypropylene additives enhances the seismic performance of concrete structures and improves the parameters of stiffness, ultimate strength, and energy dissipation capacity; However, they do cause a slight decline in ductility. It was also concluded that if there is a construction error in the structure, the use of steel fibers additives will provide better behavior than a reinforced concrete frame with conventional materials.

کلیدواژه‌ها [English]

  • Manufacturing Errors
  • Cyclic load
  • Fiber
  • Connection
  • steel
[1]- Chen, L., Lu, X., Jiang, H., & Zheng, J. (2009). Experimental investigation of damage behavior of RC frame members including non-seismically designed columns. Earthquake Engineering and Engineering Vibration, 8(2), 301-311.
[2]- Azam, R., Soudki, K., West, J. S., & Noël, M. (2017). Strengthening of shear-critical RC beams: Alternatives to externally bonded CFRP sheets. Construction and Building Materials, 151, 494-503.
[3]- Chalioris, C. E., Favvata, M. J., & Karayannis, C. G. (2008). Reinforced concrete beam–column joints with crossed inclined bars under cyclic deformations. Earthquake engineering & structural dynamics, 37(6), 881-897.
[4]- Lu, X., Urukap, T. H., Li, S., & Lin, F. (2012). Seismic behavior of interior RC beam-column joints with additional bars under cyclic loading. Earthquakes and Structures, 3(1), 37-57.
 [5]- Chalioris, C. E., Favvata, M. J., & Karayannis, C. G. (2008). Reinforced concrete beam–column joints with crossed inclined bars under cyclic deformations. Earthquake engineering & structural dynamics, 37(6), 881-897.
 [6]- Kim, S., Moon, T., & Kim, S. J. (2020). Effect of uncertainties in material and structural detailing on the seismic vulnerability of RC frames considering construction quality defects. Applied Sciences, 10(24), 8832.
[7]- Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons.
 [8]- Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings (Vol. 768). New York: Wiley.
[9]- Doǧangün, A. (2004). Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey. Engineering Structures, 26(6), 841-856.
[10]- Ghobarah, A., Saatcioglu, M., & Nistor, I. (2006). The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure. Engineering structures, 28(2), 312-326.
[11]- Gur, T., Pay, A., Ramirez, J. A., Sozen, M. A., Johnson, A. M., Irfanoglu, A., & Bobet, A. (2009). Performance of school buildings in Turkey during the 1999 Düzce and the 2003 Bingöl earthquakes. Earthquake Spectra, 25(2), 239-256.
 [12]- Zhao, B., Taucer, F., Rossetto, T. “Field investigation on the performance of building structures during the 12 May 2008 Wenchuan earthquake in China”. Engineering Structures, 31(8), pp. 1707–1723. 2009.
[13]- Kam, W. Y., Pampanin, S., & Elwood, K. (2011). Seismic performance of reinforced concrete buildings in the 22 February Christchurch (Lyttleton) earthquake.
[14]- Hanson, N. W., & Connor, H. W. (1967). Seismic resistance of reinforced concrete beam-column joints. Journal of the structural Division, 93(5), 533-560.
[15]- Zerbe, H. E., & Durrani, A. J. (1989). Seismic response of connections in two-bay R/C frame subassemblies. Journal of Structural Engineering, 115(11), 2829-2844.
[16]- Karayannis, C. G., Chalioris, C. E., & Sideris, K. K. (1998). Effectiveness of RC beam-column connection repair using epoxy resin injections. Journal of Earthquake Engineering, 2(02), 217-240.
[17]- Calvi, G. M., Magenes, G., & Pampanin, S. (2002). Relevance of beam-column joint damage and collapse in RC frame assessment. Journal of Earthquake Engineering, 6(spec01), 75-100.
[18]- Pampanin, S., Magenes, G., & Carr, A. J. (2003). Modelling of shear hinge mechanism in poorly detailed RC beam-column joints.
19- Esfandiari, J., & Loghmani, P. (2019). Effect of perlite powder and silica fume on the compressive strength and microstructural characterization of self-compacting concrete with lime-cement binder. Measurement, 147, 106846.
[20]- Gulsan, M. E., Al Jawahery, M. S., Alshawaf, A. H., Hussein, T. A., Abdulhaleem, K. N., & Cevik, A. (2018). Rehabilitation of normal and self-compacted steel fiber reinforced concrete corbels via basalt fiber. Advances in concrete construction, 6(5), 423.
[21]-Esfandiari, J., & Latifi, M. K. (2019). Numerical study of progressive collapse in reinforced concrete frames with FRP under column removal. Adv. Concrete Constr, 8(3), 165-172.
[22]- Esfandiari, J., & Heidari, O. (2021). Investigation on the behavior of concrete with optimum percentage of steel fiber, microsilica, fly ash and hybrid fiber under different loading pattern. Journal of Structural and Construction Engineering, 8(6), 130-150.
[23]- Standard, B. (1881). Part-102 (1983) Testing Concrete Method for Determination of Slump, London. British Standard Institution.
[24]- ACI Committee. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
[25]- Standard, A. S. T. M. (2007). C192/C192M. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken PA.
[27]- Taylor, A. W. (2015). Performance Based Seismic Design of Reinforced Concrete Structures with ACI 318-14. In Structures Congress 2015 (pp. 1380-1388).
[28]- Fema, A. (2005). 440, Improvement of nonlinear static seismic analysis procedures. FEMA-440, Redwood City, 7(9), 11.