ارزیابی ضریب اصلاح پاسخ (R) ساختمان‌های فولادی منظم حاوی سیستم «قاب با ستون‌های پیوندشده»

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه تفرش، تفرش، ایران

2 استادیار، دانشکده مهندسی عمران، دانشگاه تفرش، تفرش، ایران

چکیده

این مقاله به ارزیابی ضرایب «اصلاح پاسخ»، «شکل‌پذیری» و «اضافه مقاومت» ساختمان های فولادی مجهز به سیستم «قاب با ستون‌های پیوندشده» (LCF ) پرداخته است. این سیستم به عنوان یک سیستم باربر جانبی نسبتاً جدید دوگانه محسوب شده و به واسطه نوظهور بودن، مرکز توجه محققین قرار گرفته و ضرورت مطالعات لرزه‌ای بر سازه‌های مجهز به این سیستم، هنوز احساس می-شود. از این‌رو، تعدادی قاب ساختمانی 3، 5، 7، 9 و 11 طبقه با سیستم باربر جانبی LCF در نرم‌افزار اپنسیس پیاده‌سازی شده، با استفاده از زلزله‌های دور از گسل FEMA P695، تحت تحلیل‌های دینامیکی فزاینده، استاتیکی غیرخطی، دینامیکی خطی و غیرخطی قرار گرفته و ضریب اصلاح پاسخ برای هر یک از آن‌ها محاسبه و استخراج گردیده است. به منظور بررسی بهتر و دقیق‌تر، در این ارزیابی دو عملکرد برشی و خمشی تیرهای پیوند مورد مطالعه قرار گرفته است. نتایج به دست‌آمده حاکی از تغییرات ضریب R، با افزایش تعداد طبقات قاب‌ها بوده است. با این حال، لزوماً با افزایش تعداد طبقات، مقادیر میانگین ضریب R، همواره صعودی و یا نزولی، منتج نشده است. همچنین در اکثر قاب‌ها، نتایج مربوط به قاب‌های حاوی تیر پیوند برشی، بزرگ‌تر از نتایج قاب‌های حاوی تیر پیوند خمشی حاصل گردیده است. بر مبنای نتایج حاصل برای قاب‌های LCF با طول تیر پیوند 2 متری، پیشنهاد می‌شود ضریب اصلاح پاسخ برای این سیستم باربر جانبی، بیشتر از 6 اختیار نگردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Response Modification Factor of Regular Steel Buildings with "Linked Columns Frame" System

نویسندگان [English]

  • Yaser Golestani 1
  • Elham Rajabi 2
  • Reza Rajabi Soheili 1
1 MSc Student, Department of Civil Engineering, Tafresh University, Tafresh,. Iran
2 Assistant Professor, Department of Civil Engineering, Tafresh University, Tafresh, Iran
چکیده [English]

This paper evaluates the "Response Modification", "Reduction due to ductility" and "Over-strength" factors for steel frames with "Linked Columns Frame" as dual systems. Since, LCF is a relatively modern lateral load resisting system, the necessity of a more comprehensive study is felt for performance evaluation of these frames under strong ground motions. In this regard, steel frames equipped with the linked column frame with 3, 5, 7, 9, and 11 stories are designed based on the Iranian earthquake design code (Standard No. 2800, 4th version) and implemented in Opensees software. Response modification factor (R factor) is calculated based on the result of incremental dynamic analysis (IDA), linear and nonlinear dynamic analysis under far-field earthquakes which have been presented in FEMA-P695. For a more accurate assessment, the shear and flexure performance of link beams is investigated in this study. The results show that R factors change in the height of steel frames with LCF. However, the mean values of the R factor do not necessarily increase or decrease as the number of stories increases. In most cases, R factors for LCFs with shear links are larger than the related result of steel frames containing flexural links. Also, the R factor does not need to consider more than 6.0 for regular LCFs with studied shear link beam.

کلیدواژه‌ها [English]

  • Response Modification Factor
  • Linked Column Frame
  • Incremental Dynamic Analysis
  • Pushover Analysis
  • Far-Field Earthquakes
[1]   T. Güner and C. Topkaya, "Performance comparison of BRBFs designed using different response modification factors," Engineering Structures, vol. 225, p. 111281, 2020/12/15/ 2020, doi: https://doi.org/10.1016/j.engstruct.2020.111281.
[2]   M. Sohrabi-Haghighat and P. Ashtari, "Evaluation of Seismic Performance Factors for High-rise Steel Structures with Diagrid System," KSCE Journal of Civil Engineering, vol. 23, no. 11, pp. 4718-4726, 2019/11/01 2019, doi: 10.1007/s12205-019-1546-4.
[3]   FEMA-P695, "Quantification of building seismic performance factors, FEMA P695 ATC-63 Project Report," US Department of Homeland Security, FEMA, Washington, DC, 2009.
[4]   V. Mohsenian, S. Padashpour, and I. Hajirasouliha, "Seismic reliability analysis and estimation of multilevel response modification factor for steel diagrid structural systems," Journal of Building Engineering, vol. 29, p. 101168, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.jobe.2019.101168.
[5]   N. Fanaie and O. Shamlou Shahab, "Response modification factor of mixed structures," (in En), Steel and Composite Structures, vol. 19, no. 6, pp. 1449-1466, / 2015, doi: 10.12989/SCS.2015.19.6.1449.
[6]   B. Asgarian and H. R. Shokrgozar, "BRBF response modification factor," Journal of Constructional Steel Research, vol. 65, no. 2, pp. 290-298, 2009/02/01/ 2009, doi: https://doi.org/10.1016/j.jcsr.2008.08.002.
[7]   M. Izadinia, M. A. Rahgozar, and O. Mohammadrezaei, "Response modification factor for steel moment-resisting frames by different pushover analysis methods," Journal of Constructional Steel Research, vol. 79, pp. 83-90, 2012/12/01/ 2012, doi: https://doi.org/10.1016/j.jcsr.2012.07.010.
[8]   M. Malakoutian, J. W. Berman, P. Dusicka, and A. Lopes, "Quantification of Linked Column Frame Seismic Performance Factors for Use in Seismic Design," Journal of Earthquake Engineering, vol. 20, no. 4, pp. 535-558, 2016/05/18 2016, doi: 10.1080/13632469.2015.1104750.
[9]   A. Mohebkhah and J. Tazarv, "Equivalent viscous damping for linked column steel frame structures," Journal of Constructional Steel Research, vol. 179, p. 106506, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.jcsr.2020.106506.
[10] S. Shoeibi, M. Gholhaki, and M. A. Kafi, "Simplified force-based seismic design procedure for linked column frame system," Soil Dynamics and Earthquake Engineering, vol. 121, pp. 87-101, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.soildyn.2019.03.003.
[11] J. Tazarv and A. Mohebkhah, "Direct displacement-based design of the linked column steel frame system, Part 2: Development and verification," Structures, vol. 31, pp. 29-48, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.istruc.2021.01.075.
[12] J. Tazarv and A. Mohebkhah, "Direct displacement-based design of the linked column steel frame System, Part 1: Modeling and yield drift evaluation," Structures, vol. 31, pp. 341-356, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.istruc.2021.01.076.
[13] P. Dusicka and R. Iwai, "Development of Linked Column Frame System for Seismic Lateral Loads," Structural Engineering Research Frontiers, 2007, pp. 1-13.
[14] P. Dusicka and G. Lewis, "Investigation of replaceable sacrificial steel links," in Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering, 2010, vol. 1659.
[15] M. Malakoutian, J. W. Berman, and P. Dusicka, "Seismic response evaluation of the linked column frame system," Earthquake Engineering & Structural Dynamics, vol. 42, no. 6, pp. 795-814, 2013, doi: https://doi.org/10.1002/eqe.2245.
[16] A. Lopes, P. Dusicka, and J. Berman, "Linked column frame steel system performance validation using hybrid simulation," in Proc. of Tenth US National Conference on Earthquake Engineering, Anchorage, Alaska, 2014.
[17] S. Shoeibi, M. A. Kafi, and M. Gholhaki, "Performance-Based Seismic Design and Parametric Assessment of Linked Column Frame System," Periodica Polytechnica Civil Engineering, vol. 62, no. 3, pp. 555-569, 01/01 2018, doi: 10.3311/PPci.10920.
[18] A. Ezoddin, A. Kheyroddin, and M. Gholhaki, "Experimental and numerical investigation on the seismic retrofit of RC frames with linked column frame systems," Journal of Building Engineering, vol. 44, p. 102956, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.jobe.2021.102956.
[19] E. Maroofi, M. R. Mansoori, A. S. Moghadam, and A. Aziminejad, "Evaluation of rocking motion on the seismic performance of a linked column frame system," Proceedings of the Institution of Civil Engineers - Structures and Buildings, vol. 0, no. 0, pp. 1-15, doi: 10.1680/jstbu.20.00287.
[20] M. Malakoutian, "Seismic response evaluation of the linked column frame system," Ph.D. Partial Fulfillment, Civil and Environmental Engineering Dept., University of Washington, 2012.
[21] C. M. Uang, "Establishing R (or Rw) and Cd Factors for Building Seismic Provisions," Journal of Structural Engineering, vol. 117, no. 1, pp. 19-28, 1991, doi: doi:10.1061/(ASCE)0733-9445(1991)117:1(19).
[22] A. M. MWAFY and A. S. ELNASHAI, "CALIBRATION OF FORCE REDUCTION FACTORS OF RC BUILDINGS," Journal of Earthquake Engineering, vol. 06, no. 02, pp. 239-273, 2002, doi: 10.1142/s1363246902000723.
[23] Iranian Code of Practice for Seismic Resistance Design of Buildings, Standard No. 2800, 4th edition, BHRC, 2016.
[24] S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, "OpenSees command language manual," Pacific Earthquake Engineering Research (PEER) Center, vol. 264, pp. 137-158, 2006.
[25] E. A. Sumner and T. M. Murray, "Behavior of Extended End-Plate Moment Connections Subject to Cyclic Loading," Journal of Structural Engineering, vol. 128, no. 4, pp. 501-508, 2002, doi: doi:10.1061/(ASCE)0733-9445(2002)128:4(501).
[26] J. Liu and A. Astaneh-Asl, "Moment & Rotation Parameters for Composite Shear Tab Connections," Journal of Structural Engineering, vol. 130, no. 9, pp. 1371-1380, 2004, doi: doi:10.1061/(ASCE)0733-9445(2004)130:9(1371).
[27] J. Liu and A. Astaneh-Asl, "Cyclic Testing of Simple Connections Including Effects of Slab," Journal of Structural Engineering, vol. 126, no. 1, pp. 32-39, 2000, doi: doi:10.1061/(ASCE)0733-9445(2000)126:1(32).
[28] P. Uriz, "Towards earthquake resistant design of concentrically braced steel structures," Ph.D. dissertation, Civil and Environmental Engineering Dept., University of California, Berkeley, 2005.
[29] M. Menegotto and P. E. Pinto, "Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending," Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures, 1973.
[30] D. Vamvatsikos and C. A. Cornell, "Incremental dynamic analysis," Earthquake Engineering & Structural Dynamics, vol. 31, no. 3, pp. 491-514, 2002, doi: https://doi.org/10.1002/eqe.141.