ارزیابی آسیب پذیری تیپ پر تکرار مدرسه اسکلت بتنی کرمانشاه با استفاده از تحلیل غیرخطی و منحنی های شکنندگی لرزه ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 محقق پسا دکتری، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار گروه عمران، دانشکده مهندسی، دانشگاه رازی، کرمانشاه، ایران

چکیده

مدارس و ساختمانهای با کاربری آموزشی در اغلب آیین نامه های طراحی، به دلیل جمعیت زیاد آنها، به عنوان ساختمانهای با اهمیت زیاد در نظر گرفته می شوند. مطابق آیین نامه زلزله ایران، این ساختمانها با هر نوع سیستم سازه ای، باید به نحوی طراحی شوند که در مقابل زلزله طرح، حداقل دارای سطح عملکرد ایمنی جانی باشند. مدارس اسکلت بتنی در استان کرمانشاه، با توجه به ملاحظات اقتصادی، در دسترس بودن مصالح و سرعت اجرای مناسب، دارای فراوانی قابل توجهی هستند. در این میان یک تیپ خاص از این مدارس با فراوانی زیادی در اغلب شهرستانهای استان کرمانشاه اجرا شده است. از طرفی در بررسی فضاهای آموزشی پس از زلزله آبانماه 1396سرپل ذهاب در استان کرمانشاه، مواردی از آسیب های سازه ای و غیر سازه ای در مدارس مشاهده گردیده است. به همین دلیل در این مطالعه عملکرد لرزه ای این تیپ از مدارس، تحت اثر زلزله های محتمل حوزه دور و نزدیک بررسی و آسیب پذیری آنها با روشهای تحلیل استاتیکی غیرخطی و دینامیکی فزاینده IDA ارزیابی می گردد. در ادامه با انجام تحلیل استاتیکی غیرخطی، منحنی پوش سازه استخراج و پارامترهای مهمی چون شکل پذیری و ضریب رفتار محاسبه می گردد. همچنین با انجام تحلیل دینامیکی افزاینده برای این تیپ از مدارس، منحنی های شکست تحت اثر رکوردهای مختلف مقیاس شده با شتاب افزاینده ارائه و مورد بررسی قرار می گیرد. نتایج نشان می دهد رفتار و آسیب پذیری این سازه، بر حسب نوع زمین ساختگاه و رکورد های مختلف حوزه دور و نزدیک زلزله متفاوت می باشد. همچنین سازه این مدرسه علیرغم وجود نامنظمی در پلان از عملکرد قابل قبولی برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of vulnerability of popular type of Kermanshah concrete school using nonlinear analysis and seismic fragility curves

نویسندگان [English]

  • Mehdi Kahrizi 1
  • Amir houshang Akhaveissy 2
1 Postdoctoral researcher, Department of Civil Engineering, Engineering Faculty, Razi University, Kermanshah, Iran.
2 Associate Professor, Department of Civil Engineering, Engineering Faculty, Razi University, Kermanshah, Iran.
چکیده [English]

Schools and buildings with educational uses are considered as important buildings in most of the design regulations due to their large population. According to the Iranian Earthquake Regulations, these buildings with any type of structural system, must be designed in such a way that they have at least a level of safety performance against severe earthquakes. Concrete schools in Kermanshah province have a significant frequency due to economic considerations, availability of materials and proper execution speed. Meanwhile, a special type of these schools has been executed with great frequency in most cities of Kermanshah province. On the other hand, in the study of educational spaces after the November 2017 Sarpol-e-Zahab earthquake in Kermanshah province, several cases of structural and non-structural damages have been observed in schools. For this reason, in this study, the seismic performance of this type of schools, under the influence of possible earthquakes, as well as their vulnerability are evaluated by nonlinear static analysis methods and increasing dynamic analysis (IDA). Then, by performing nonlinear static analysis, the envelope curve of the structure is extracted and important parameters such as ductility and the coefficient of behavior are calculated. Moreover, by performing the IDA for this type of schools, the failure curves subjected to various records in comparison with the increasing acceleration are presented and studied. The results show that the behavior and vulnerability of this structure are different according to the type of site and different records of near and far zones of the earthquake. Also, the structure of this school has an acceptable performance despite the irregularity in the plan.

کلیدواژه‌ها [English]

  • Seismic performance"
  • Vulnerability"
  • School"
  • Concrete structure"
  • Nonlinear analysis"
  • "
  • Fragility curve"
[1] Bazzurro, P., Cornell, C. A. (1994). Seismic hazard analysis for non-linear structures. I:Metodology. ASCE Journal of Structural Engineering, 120(11): 3320–3344.
[2] ATC-40 Report. (1995). Performance based seismic engineering of buildings, Structural Engineers Association of California, Sacramento, CA.
[3] FEMA356. (2000). prestandardand commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency.
[4] ASCE 41. (2013). Seismic rehabilitation of existing buildings. American Society of Civil Engineers; Virginia: Reston.
[5] Instruction for Seismic Rehabilitation of Existing Buildings (NO. 360). (2014). Vice Presidency for Strategic Planning and Supervision. Islamic Republic of Iran.
[6] Bazzurro, P., Cornell, C. A. (1994). Seismic hazard analysis for non-linear structures. II:Applications. ASCE Journal of Structural Engineering, 120(11): 3345–3365.
[7] Shome N., Cornell, CA. (1999). probabilistic seismic demand analysis of nonlinear structures. Report No. RMS-35,RMS program, Stanford University.
[8] Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of structural engineering, 128(4), 526-533.
[9] Vamvatsikos, D., Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31 (3), 491–514.
[10] Barakati1 S, Daneshjoo F. (2014). Seismic Demand and Capacity of Steel Moment Resisting Frames Under Near-Fault Earthquakes Using Incremental Dynamic Analysis. IQBQ, 14 (1) :1-14
[11] Nazari, Y. R., & Saatcioglu, M. (2017). Seismic vulnerability assessment of concrete shear wall buildings through fragility analysis. Journal of Building Engineering, 12, 202-209.
[12] Xu, C., Deng, J., Peng, S., & Li, C. (2018). Seismic fragility analysis of steel reinforced concrete frame structures based on different engineering demand parameters. Journal of Building Engineering, 20, 736-749.
[13] Dizaj, E. A., Madandoust, R., & Kashani, M. M. (2018). Probabilistic seismic vulnerability analysis of corroded reinforced concrete frames including spatial variability of pitting corrosion. Soil Dynamics and Earthquake Engineering, 114, 97-112.
[14] Choudhury, T., & Kaushik, H. B. (2018). Seismic fragility of open ground storey RC frames with wall openings for vulnerability assessment. Engineering structures, 155, 345-357.
[15] Romano, F., Faggella, M., Gigliotti, R., Zucconi, M., & Ferracuti, B. (2018). Comparative seismic loss analysis of an existing non-ductile RC building based on element fragility functions proposals. Engineering Structures, 177, 707-723.
[16] Pavel, F., & Carale, G. (2019). Seismic assessment for typical soft-storey reinforced concrete structures in Bucharest, Romania. International Journal of Disaster Risk Reduction, 41, 101332.
[17] Choudhury, T., & Kaushik, H. B. (2019). Treatment of uncertainties in seismic fragility assessment of RC frames with masonry infill walls. Soil Dynamics and Earthquake Engineering, 126, 105771.
[18] Kalantari, A., & Roohbakhsh, H. (2020). Expected seismic fragility of code-conforming RC moment resisting frames under twin seismic events. Journal of Building Engineering, 28, 101098.
[19] Samadian, D., Ghafory-Ashtiany, M., Naderpour, H., & Eghbali, M. (2019). Seismic resilience evaluation based on vulnerability curves for existing and retrofitted typical RC school buildings. Soil Dynamics and Earthquake Engineering, 127, 105844.
[20] Perrone, D., O'Reilly, G. J., Monteiro, R., & Filiatrault, A. (2020). Assessing seismic risk in typical Italian school buildings: From in-situ survey to loss estimation. International Journal of Disaster Risk Reduction, 44, 101448.
[21] Motlagh, Z. S., Dehkordi, M. R., Eghbali, M., & Samadian, D. (2020). Evaluation of seismic resilience index for typical RC school buildings considering carbonate corrosion effects. International Journal of Disaster Risk Reduction, 46, 101511.
[22] Kahrizi, M., & TahamouliRoudsari, M. (2020). Seismic performance of school buildings in 2017 Ezgeleh Earthquake, Iran. Bulletin of the New Zealand Society for Earthquake Engineering, 53(2), 70-82.
[23] Loads on the building (Subject 6). (2014). Office of National Building Regulations, Tehran, Iran.  
[24] Applied Technology Council. (1995). Structural response modification factors, ATC-19, Redwood City, California.
[25] Newmark, N. M., & Hall, W. J. (1982). Earthquake spectra and design. Engineering monographs on earthquake criteria.
[26] FEMA P 695. (2009). Quantification of Building Seismic Performance Factors. Washington, D.C. Federal Emergency Management Agency, USA.
[27] Next Generation Attenuation of Ground Motions (Nga) Project (2006). http://peer.berkeley. edu/ nga/ (Accessed 10 October 2006).
[28] H‌o‌s‌s‌e‌i‌n‌i, M., & Majd, M. (2011). T‌H‌E E‌F‌F‌E‌C‌T O‌F B‌R‌A‌C‌I‌N‌G P‌A‌T‌T‌E‌R‌N O‌N T‌H‌E F‌R‌A‌G‌I‌L‌I‌T‌Y C‌U‌R‌V‌E‌S O‌F R‌E‌G‌U‌L‌A‌R S‌T‌E‌E‌L B‌U‌I‌L‌D‌I‌N‌G‌S W‌I‌T‌H X-B‌R‌A‌C‌I‌N‌G, U‌S‌I&zwn. Sharif Journal of Civil Engineering, (1), 55-63.
[29]. Road , Housing & Urban Development Research Center.(BHRC). Iran strong motion network. http://ismn.bhrc.ac.ir.