بررسی تاثیر پومیس به عنوان ماده جایگزین سیمان بر دوام سیمان آلومینات کلسیم

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

2 دانشیار دانشکده عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فن آوری پیشرفته ، کرمان ، ایران

3 استادیار گروه مهندسی عمران، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

4 استادیار گروه مهندسی عمران، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.

چکیده

یکی از سیمان‌های ویژه که در شرایط آسیب‌رسان محیطی عملکرد بسیار بهتری نسبت به سیمان پرتلند دارد، سیمان آلومینات کلسیم است با این وجود سیمان آلومینات کلسیم به علت کاهش دراز مدت مقاومت و از دست دادن پایایی که در اثر وقوع پدیده‌ی تبدیل روی می‌دهد، چندان مورد استقبال مهندسین قرار نگرفته است. این پژوهش در نظر دارد با به‌کارگیری پودر پومیس به عنوان جایگزین بخشی از سیمان مصرفی، مشخصه‌های دوام ملات آلومینات کلسیم را بهبود ببخشد. در تحقیق پیش‌رو با یک برنامه آزمایشگاهی 5 طرح مخلوط علاوه بر مخلوط شاهد به ترتیب حاوی 5 ،15، 25، 40 و 60 درصد پومیس به عنوان جایگزین سیمان، ساخته شد و از نظر مولفه‌های دوام مورد بررسی قرار گرفت. نتایج نشان داد که نمونه‌ی شاهد در سن 1 روز به مقاومت 33 و در سن 28 روز به 44 مگاپاسکال رسید ولی به علت پدیده‌ی تبدیل، در سن 90روز، مقاومت فشاری 45 درصد کاهش یافت. از طرف دیگر اما در اکثر نمونه‌های حاوی پومیس نتایج متفاوتی دیده شد. پومیس با کنترل فرایند تبدیل، تاثیر قابل توجهی بر مقاومت و مهمتر از آن بهبود مولفه‌های دوام سایر نمونه‌ها داشت به طور مثال در بهترین طرح مخلوط(P40)، مقاومت فشاری 47 درصد، ضریب مهاجرت یون کلراید 78 درصد و مقاومت الکتریکی حدود 400 درصد نسبت به نمونه کنترل در سن 90 روز بهبود مشاهده شد. در تحقیقات قبلی تاکنون جایگزینی پومیس با سیمان آلومینات کلسیم مورد توجه قرار نگرفته است لذا بررسی اثر پومیس بر پایایی سیمان آلومینات کلسیم می‌تواند نوآوری این پژوهش به حساب آید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of pumice as a supplementary cementitious material on the durability of calcium aluminate cement composite

نویسندگان [English]

  • Alireza Rasekhi Sahneh 1
  • HESAM MADANI 2
  • MOHAMMAD ALI DASHTIABADI RAHMAT 3
  • Hadi Dehghan Manshadi 4
1 Department of Civil Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
2 Department of Civil Engineering and Surveying, Graduate University of Advanced Technology, Kerman, Iran
3 Department of Civil Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
4 Department of Civil Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
چکیده [English]

Calcium aluminate cement is one of the special cements that performs much better than Portland cement in severe environmental conditions. Engineers, on the other hand, have been critical of this unique cement due to the loss of long-term strength and durability caused by the conversion phenomena. The goal of this study is to improve the durability of calcium aluminate mortar by replacing the cement with pumice powder. In this study, pumice was used as cement substitutes in proportions of 0, 5,15,25, 40, and 60%, and a total of 6 mortar mixes were developed and it was examined in terms of durability properties. The results showed that the plain mixture reached a compressive strength of 33 MPa at the age of 1 day, and 44MPa at the age of 28 days but at 90 days, due to the conversion phenomenon, its strength had decreased by 45%. Pumice had a considerable effect on the strength and, more significantly, the durability properties of mixtures by influencing the conversion phenomena. At the age of 90days, Compressive strength, chloride ion migration coefficient, and electrical resistance, for example, have improved 47%, 78%, and 400% in the ideal mixture (P40) compared to the plain mix. According to the review of the literature, the effect of replacing pumice with CAC cement has not been considered significantly and the effect of pumice on the durability of this type of cement has not been investigated, which can be considered an innovation of this study.

کلیدواژه‌ها [English]

  • Pumice
  • Calcium Aluminate Cement
  • Durability
  • Conversion
  • Supplementary Cementitious Material
  • Mortar
[1] Heikal, Mohamed, M. M. Radwan, and O. K. Al-Duaij.(2015) "Physico-mechanical characteristics and durability of calcium aluminate blended cement subject to different aggressive media." Construction and building materials 78: 379-385.
[2] Khaliq, W., & Khan, H. A.(2015). High temperature material properties of calcium aluminate cement concrete. Construction and Building Materials, 94, 475-487.
 [3] Scrivener, K. L., Cabiron, J. L., & Letourneux, R.(1999). High-performance concretes from calcium aluminate cements. Cement and concrete research, 29(8), 1215-1223.
[4] Ann, K. Y., & Cho, C. G.(2014). Corrosion resistance of calcium aluminate cement concrete exposed to a chloride environment. Materials, 7(2), 887-898.
[5] C. Parr, D. Veyrat, C. Wohrmeyer, J.P. Letourneux.(2008). High purity calcium aluminate binders for demanding high temperature applications, in: C. Fentiman, R. Mangabhai, K.L. Scrivener (Eds.), Centenary Conference on Calcium AluminateCements, IHS BRE Press, Avignon, France, , pp. 417–428.
[6] Adams, M. P., & Ideker, J. H.(2017). Influence of aggregate type on conversion and strength in calcium aluminate cement concrete. Cement and Concrete Research, 100, 284-296..
 [7] Maaroufi, M. A., Lecomte, A., Diliberto, C., Francy, O., & Le Brun, P.(2015). Thermo-hydrous behavior of hardened cement paste based on calcium aluminate cement. Journal of the European Ceramic Society, 35(5), 1637-1646.
[8] Schmitt, N., Hernandez, J. F., Lamour, V., Berthaud, Y., Meunier, P., & Poirier, J.(2000). Coupling between kinetics of dehydration, physical and mechanical behaviour for high alumina castable. Cement and concrete research, 30(10), 1597-1607.
[9] Heikal, M., Radwan, M. M., & Darweesh, H. H. M.(2005). Hydration characteristics and durability of calcium aluminate cement containing some blended systems. Silicates Ind Ceram Sci Technol, 70, 3-4.
[10] Zhang, Y., Chang, J., Zhao, J., & Fang, Y.(2018). Nanostructural characterization of Al (OH) 3 formed during the hydration of calcium sulfoaluminate cement. Journal of the American Ceramic Society, 101(9), 4262-4274.
 [11] K.L. Scrivener, A. Capmas.(1998).Calcium aluminate cements, in: P.C. Hewitt (Ed.), Lea's Chemistry of Cement and Concrete, Elsevier - Butterworth-Heinemann, Oxford, UK, pp. 713–782.
 [12] Rashid, S., Barnes, P., Bensted, J., & Turrillas, X.(1994). Conversion of calcium aluminate cement hydrates re-examined with synchrotron energy-dispersive diffraction. Journal of materials science letters, 13(17), 1232-1234.
[13] Sakai, E., Sugiyama, T., Saito, T., & Daimon, M.(2010). Mechanical properties and micro-structures of calcium aluminate based ultra-high strength cement. Cement and Concrete Research, 40(6), 966-970.
[14] Khan, H. A., Castel, A., Khan, M. S., & Mahmood, A. H.(2019). Durability of calcium aluminate and sulphate resistant Portland cement-based mortars in aggressive sewer environment and sulphuric acid. Cement and Concrete research, 124, 105852.
[15] Paris, J. M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1-18.
[16] Wu, K., Han, H., Rößler, C., Xu, L., & Ludwig, H. M. (2021). Rice hush ash as supplementary cementitious material for calcium aluminate cement–Effects on strength and hydration. Construction and Building Materials, 302, 124198.
[17] Son, H. M., Park, S. M., Jang, J. G., & Lee, H. K.(2018). Effect of nano-silica on hydration and conversion of calcium aluminate cement. Construction and Building Materials, 169, 819-825.
[18] Chen, J., Liang, C., Li, B., Wang, E., Li, G., & Hou, X.(2018). The effect of nano-γAl2O3 additive on early hydration of calcium aluminate cement. Construction and Building Materials, 158, 755-760.
[19] Gosselin, C.(2009). Microstructural development of calcium aluminate cement-based systems with and without supplementary cementitious materials (No. THESIS). EPFL.
[20] Son, H. M., Park, S., Kim, H. Y., Seo, J. H., & Lee, H. K.(2019). Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement. Construction and Building Materials, 224, 40-47.
[21] Idrees, M., Ekincioglu, O., & Sonyal, M. S. (2021). Hydration behavior of calcium aluminate cement mortars with mineral admixtures at different curing temperatures. Construction and Building Materials, 285, 122839.
[22] Saeedikia, A. Madani, H.(2019),Inuence of polymer materials on the durability of calcium aluminate cement based mixtures, Journal of Concrete Structures and Materials, 3(2), ,pp. 24-40 (In persian).
[23] Motamed, S. Madani, H.(2020) ,combined Effect of glass and polymer fibers on shrinkage ,durability and mechanical properties of cementitious composites, Sharif Journal of Civil Engineer , 362 (32),pp 67-76(In persian).
 [24] ASTM. (2002). ASTM C109/C109M for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50 mm Cube Specimens).
[25] N. Build, 492.(2004).Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments., Nordtest method, 492.
 [26] Lencioni, J. W., & De Lima, M. G.(2013). A study of the parameters that affect the measurements of superficial electrical resistivity of concrete. In Nondestructive Testing of Materials and Structures (pp. 271-276). Springer, Dordrecht.
[27] R.B. Polder, C. Andrade, B. Elsener, Vennesland, J. Gulikers, R. Weidert, Rilem TC 154-EMC.(2000).electrochemical techniques for measuring metallic corrosion – test methods for onsite measurement of resistivity of concrete, Mater. Struct. 33 603–611. ISSN: 1359-5997-00.
[28]ASTM C642.(1997).Standard Test Method for Density , Absorption , and Voids in Hardened Concrete, ASTM C642.
[29] Mousavi, S. R., Saadatipour, A., Mokhtari, Y., & Shahnazari Aval, S.(2021). Investigating the size effect on the compressive strength of self-consolidating concrete containing Taftan Pumice and micro-silica. Journal of Structural and Construction Engineering, 8(5), 333-346.
[30] Paris, J. M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G.(2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1-18.
[31]Gosselin, C.(2009). Microstructural development of calcium aluminate cement based systems with and without supplementary cementitious materials (No. THESIS_LIB). EPFL.
[32] Alonso, C., Andrade, C., & González, J. A.(1988). Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cement and concrete research, 18(5), 687-698.
[33] R.N. Cox, R. Cigna O (Eds.). (1997),COST-509, Corrosion and Protection of Metals in Contact with Concrete, Final Report,
[34] Mehta, P. K. A. M., & Monteiro, P.(2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education.